
Lively Code Database
Seminar Web-based Development Environments

Tilman Giese and Marko Röder

Hasso-Plattner-Institut, Potsdam
{tilman.giese,marko.roeder}@student.hpi.uni-potsdam.de

Abstract. The Lively Kernel is a web-based development environment
that is increasingly gaining popularity. Its server-side persistency is cur-
rently based on Subversion. As a file-based revision control system, Subver-
sion does not allow for a more fine-granular revision control for JavaScript
modules, classes, or methods. This paper presents an alternative persis-
tency layer based on CouchDB that was integrated into the Lively Kernel
to allow developers to store JavaScript code objects in a database.

1 Motivation and Goals

With the increasing capabilities and performance of today’s web browsers web-
based development environments have become popular. The approach to develop
applications within the browser without any additional tool is very intriguing.
The Lively Kernel is such a development environment that encourages developers
to explore this new hands-on way of creating web applications.

The Lively Kernel is currently based on Subversion [1] as its persistency layer.
The Subversion repository is directly accessed by the browser to retrieve all nec-
essary files, in particular the XHTML and JavaScript files that contain the actual
code to be executed. As Subversion is a file-oriented versioning control system,
the versioning granularity in the Lively Kernel is also a file. However, using files
as the smallest entities to contain JavaScript code entails several shortcomings.
It also has a serious impact on how JavaScript code can be maintained by means
of the built-in Lively Kernel source code browsers.

The first and foremost shortcoming of this approach is that JavaScript source
code has to be parsed all the time in order to provide a fine-granular view
on classes within a module and methods within a class. Syntax errors in the
JavaScript file might render the entire file unparseable and thus no classes or
methods might be visible in a code browser. By just relying on the means of
JavaScript source code, it is also quite difficult to introduce metadata on classes
or methods (like documentation or method categories). The current approach
requires the developer to follow certain conventions, e.g. by declaring a class
property with a particular name or by adding a special comment on top of a
method definition.

And further issues arise from files being the entity of versioning control. Every
small change to a method will always result in the entire file being saved and

2 Giese, Röder

assigned a new Subversion revision number. This can eventually lead to a very
huge database. But more importantly, the connection between changes that logi-
cally belong together is lost as each change will create a new Subversion revision.
Without specific knowledge of how changes were done it is thus impossible to
revert back to a consistent state.

The goal of this project was to provide a more fine-granular revision control
for JavaScript code objects. A code object is a source code artifact within the
Lively Kernel environment that has a semantical notion of its own. A single code
object can be composed of other smaller code objects. Examples of such code
objects are methods, classes, and modules. The code objects should then be stored
in a separate database rather than the Subversion repository. The existing Lively
Kernel source code browsers should be extended to read and write code objects
without the developer noticing the change in persistency. An interface should be
provided to easily access code objects in the database. The JavaScript source
code should still be accessible as a file and modules should be loadable from the
database in the same way they were previously loaded. Figure 1 summarizes the
change in persistency.

Fig. 1: Persistency Change

2 Implementation

The following sections present our solution in more detail and explain how it
integrates into the Lively Kernel. The overall architecture is briefly described
followed by an overview of the three major parts of the solution: the Code
Database API to access the database, the Code Database Browser as the tool to
develop applications and the Lively Kernel core extension that allows developers
to load code from the database.

2.1 High-Level Architecture

As a preset requirement, CouchDB [2] had been chosen very early as the database
technology to store code objects. CouchDB and Subversion have a different notion
of revision, therefore the term needs clarification. A code object revision is a
particular persistent representation of a code object at a specific point in time.
Each code object revision corresponds to a particular CouchDB document. A code

Lively Code Database 3

object revision is identified by a code object revision number that is sequentially
incremented for each new revision starting with 1 for the first revision. The
revisions are collected in a code object revision history. Code object revisions can
be flagged as drafts meaning they are not visible to developers unless specifically
requested. Listing 1.1 shows the CouchDB document for a class revision. The
revision properties are self-explanatory. CouchDB documents are JavaScript
objects in JSON form.

Listing 1.1: CouchDB Document: Class Revision
{

"_id": "Revision : : 2 5 : : TestModule : : TestClass",
"_rev": "25−2a4bb26e8b88a5447215e71e942f6870",
"type": " c lass ",
"name": "TestClass",
"documentation": "This i s a c lass for test ing purposes",
" superc lass ": "Object",
"methods": [

"method1", "method2", "method3"
],
"module": "TestModule"

}

In order to group several code objects together, there is also the concept of
a change set. A set of changes to a set of code objects is called a change set
thereby change set implicitly defines a logical unit of work. Persisting a change
set in the database will create a change set revision. Similarly to a code object
revision history there is also a change set revision history that keeps track of all
the change sets. Listing 1.2 shows an extract of the CouchDB document that
represents the change set revision history. It stores who committed the change set
and which code objects were involved respectively what actions were performed
on these code objects.

Listing 1.2: CouchDB Document: Change Set Revision History
{

"_id": "ChangeSetHistory",
"_rev": "200−c4a81c3b50ac4849e5595554a796e4fb",
" currentRevis ion ": 58,
" rev i s ionHistory ": [

...
{

" rev i s i on ": 36,
"author": "m. roeder",
"date": "2010−07−20T14:07:55Z",
"message": "my commit message",
" objects ": [

{
"name": "TestModule2",
" rev i s i on ": 1,
"action": "add"

4 Giese, Röder

},
{

"name": "TestModule2 : : TestClass",
" rev i s i on ": 1,
"action": "add"

},
{

"name": "TestModule1",
" rev i s i on ": 2,
"action": "update"

}
]

},
...

]
}

In order to avoid name clashes when storing documents in CouchDB, there
are the following conventions for document identifiers:

Listing 1.3: CouchDB Document Identifiers
- Revision::{RevNumber}::{ModuleName}[::{ClassName}[::{MethodName}]]
- RevisionHistory::{ModuleName}[::{ClassName}[::{MethodName}]]
- ChangeSetHistory

2.2 Code Database API

The Code Database API is the interface to all code objects stored in the database.
It reflects the concepts described in the previous section. Figure 2 shows the
classes that are involved.

Fig. 2: Code Database API: Class Diagram

Lively Code Database 5

The main entry point is the class Repository. It provides methods to retrieve
code objects and to create a new change set:

Listing 1.4: Repository Interface
to retrieve a single code object
getCodeObject(type?, name+, includeDrafts?)
e.g. getCodeObject(CDB.Module, 'TestModule ')
e.g. getCodeObject('TestModule ', ' TestClass ', true)

to list code objects
listCodeObjects(type, name+, includeDrafts?)
e.g. listCodeObject(CDB.Method, 'TestModule : : TestClass ')

to create a new change set
createChangeSet()

A typical program flow is depicted in figure 3. First, a reference to the code
database repository is created along with a new change set. Afterwards, the
database can be queried for code objects using either the getCodeObject or
listCodeObjects method. Before a code object can be modified, it has to be
added to the change set. Saving the code object will persist all its properties in
the database using a draft revision. Code objects can, of course, be saved several
times until the change set is finally committed.

Fig. 3: Typical Program Flow

Draft revisions of code objects are snapshots that do not necessarily have to
be in an executable state or consistent with other code objects. Saving a draft
revision will create a new CouchDB document for the revision and modify (or
create if the object does not exist yet) the CouchDB document for the code
object revision history. Editing conflicts with other developers are detected upon

6 Giese, Röder

changing the revision history1. When the change set is committed, consistency
is checked more properly, for example a class also has to be part of the change
set if a method was added to it. After all consistency checks have successfully
passed, the draft flag is removed from the latest revisions of all code objects and
a new change set revision is created. Listing 1.5 shows a small example that adds
a new method to an existing class, saves and commits the changes.

Listing 1.5: Example Program
var rep = new CDB.Repository();
var cs = rep.createChangeSet();

var klass = rep.getCodeObject(CDB.Klass, 'TestModule , 'TestClass ') ;
var method = new CDB.Method('myNewMethod ') ;
k lass . addMethod(method) ;

method . documentation = 'Put here what the method does ' ;
method . source = 'function() { ... } ' ;

cs . add(k lass) ;
cs . add(method) ;

k lass . save () ; // saves the changes as draft
method . save () ;

cs . commit() ; // commits the changes

Throughout the Code Database API error conditions are signaled using excep-
tions. For example, getCodeObject will throw an ObjectNotFoundException if
the specified code object is not in the database. commit can throw a Consistency
Exception if any of the consistency constraints are not met or, like all database
operations, a DatabaseException if there is technical problem with the database.

2.3 Code Database Browser

One implementation that uses the Code Database API is the Code Database
Browser. It is the tool that lets a developer browse and edit the Lively Kernel
source code stored inside a CouchDB database. By giving the user this kind of
tool, there is no need to directly interact with the database. Everything that
needs to be done – like adding or removing a code object (e.g. a method) and
setting its attributes or contents – can be done with the browser. Figure 4 shows
the Code Database Browser and names its parts.

To make use of the look and feel of the Lively Kernel browser-style, the Code
Database Browser was built on top of already existing classes that are used to
show the JavaScript files from the Subversion repository. Using this basic browser
1 Whenever a CouchDB document is updated the document revision hash (which is a

CouchDB identifier) of the previous revision has to be provided. If another revision
was added in the meantime, CouchDB can thus detect an update conflict.

Lively Code Database 7

Fig. 4: The Code Database Browser

there is not only a common look and feel but also the same understanding of how
to represent and work with each code object. Thus it will be easy to integrate
with the default code browser or even replace it in one of the next steps.

A specialty of the Code Database Browser is its differentiation between saving
and committing changes. Derived from the two ways code objects can be stored
– either as draft or as a commit when semantically grouped – there are also
two ways to persist changes. The first one is the default action which is carried
out e.g. after changing a method and pressing the keyboard shortcut to save
(depending on the operation system that could be CMD + S). This invokes the
save method on the affected code objects and stores them as drafts inside the
database. Having the draft status the changes have only been safely persisted
but they do not affect the currently loaded and executed code. If the developer
wants to activate the changes instead, then the commit button has to be pressed
and all the changes done inside the current change set will be committed and
activated. Since the developer might not always want to see the changes made
as drafts, the draft button switches the browser mode between only displaying
activated code and also displaying drafts.

Adding and removing a module, class or method which can be done by the
"Add module" button and the browser sub menus automatically creates a draft
for the corresponding code object.

2.4 Kernel Extension

In the last two sections we focused on how to manage code objects with the Code
Database API and the Code Database Browser. In this section we will explain
how the code that is stored inside CouchDB can be loaded into and executed
inside the Lively Kernel.

Listing 1.6 shows the structure of a module that can be loaded from the Sub-
version repository into the Lively Kernel system. The module parameter creates
a new module and namespace called lively.Example that has dependencies to

8 Giese, Röder

lively.Tools and lively.Helper. Inside that namespace, a class definition
creates the new class SubClass which is derived from SuperClass. The class
SubClass can have methods like initialize and aMethod and attributes like
documentation.

Listing 1.6: Example for the module structure
module(' l i v e l y . Example ').requires(' l i v e l y . Tools ', ' l i v e l y . Helper ').

toRun(function(example, tools, help) {
SuperClass.subclass(' l i v e l y . Example . SubClass ', {
documentation: ' This i s a subclass of SuperClass . ',

initialize: function($super) {
...

},

aMethod: function(arg1, arg2) {
...

},
...

});
...

});

Our goal was to extend the current core system to load source code from the
code database in the same manner. So we introduced a new prefix for all the
source code that is loaded from a database. This prefix starts with a $-sign which
is followed by the name of the database and a dot. So the prefixed module name
for the module of listing 1.6 would look like $code_db.lively.Example when
loaded from the code database. In this case code_db is the database name of a
CouchDB database containing Lively Kernel source code.

Furthermore the same style of references can be made inside requirements
and when subclassing. This allows a developer of the Lively Kernel to adapt to
the new persistency layer more easily.

What is done when the Loader of the Lively Kernel comes across one of the
new prefixed module references is that the request of loading the JavaScript file
from a URL is modified to not use the current Subversion repository but the
CouchDB instance that has been configured. On that CouchDB the selected
database is queried for a list (one of CouchDB’s querying techniques) that builds
a JavaScript file with the same kind of module structure used by the Lively
Kernel until today.

3 Discussion

The previous sections introduced the changes we made to the Lively Kernel to
make it use a CouchDB database as a (second) persistency layer. Now there shall
be a discussion on the decision to use CouchDB as a revision control system
(RCS) and the advantages and disadvantage we did discover working on it.

Lively Code Database 9

CouchDB itself is one of the new database technologies that arose within the
NoSQL movement. Its document-oriented style and the use of JavaScript to define
queries (based on the map/reduce algorithm) makes it far more appropriate to
store the source code of the Lively Kernel inside it than a relational database.
However, its simple key-document storage has also some disadvantages when
being used as RCS for object-oriented source code because nowadays every object-
oriented programming language has some kind of namespace concept. So the
Lively Kernel built upon JavaScript has that too: methods and attributes belong
to a class, classes belong to a module and modules have a path-like namespace
structure. To support that we had to come up with a mapping of this whole
structure to a single key (see section 2.1 for that).

Another important point which was already mentioned is how to manage
the revisions. At first we completely wanted to rely on what CouchDB calls a
document revision for our code objects. Doing this and storing a code object (e.g. a
method) inside only one CouchDB document should lead to code object revisions
stored as document revisions. What we did ignore following this approach was
that CouchDB revisions are not revisions as in RCSs. Old revisions could for
example be removed when compacting a database or omitted making a backup
copy to another CouchDB instance. This surely is unwanted when storing source
code where one day you might go back in time and restore an old version or
use multiple versions of the same file/library in different parts of the system
in parallel. So to get fully persistent revisions we ended up with a revisioning
system that stores a document for each revision of a code object which was one
of two possible ideas [3].

At last we needed a simple and efficient way to reconstruct JavaScript code
from the code objects stored inside the CouchDB. This is a point where CouchDB
again can show its advantages of document storage. Using map/reduce inside
a mixture of views and lists (two of the querying techniques) we were able to
construct JavaScript files for modules that look exactly the same as modules that
are stored as files inside the Subversion repository. As an alternative to using
map/reduce code to construct the JavaScript files, a template-based approach
that is also supported by CouchDB could have been taken. But as long as the
resulting structure of the JavaScript files is that simple creating a template would
just be more overhead. However, in both cases the resulting CouchDB lists can
easily be accessed by a URL which by now is the access paradigm for Subversion
files too. Therefore no deep changes inside the Lively Kernel had to be done to
execute source code that comes out of the CouchDB.

4 Related Work

Like other revision control systems such as ENVY/Developer [4], the Lively
Code Database provides the developer with a toolset that is implemented on the
core system to help with configuration management and version control. With
a similar type of structuring code objects – modules, class and methods – and
a browser to develop and maintain these objects the Code Database enables

10 Giese, Röder

changes on the method level. Unlike ENVY/Developer our approach does not
have component ownership but an author for each revsion.

In contrast to RCS like Subversion [1], GIT [5] or Mercurial [6], our Code
Database on top of a CouchDB database does not use files as the finest granularity
for source code but instead it breaks it down into modules, classes and methods.
All these parts are separatly versioned and kept together by an encapsulating
change set. So there are less conflicts if more than one developer is working on
the same part of the system.

We are working with revisions similarly to Perforce [7] in terms of letting
the server have a database with meta information on the versioned source code
(e.g. revision numbers and relations between different revisions) and storing the
source code as separate documents. Additionally we have change sets (that are
called change lists in Perforce) that group multiple changes on code objects and
name the action that is carried out (like added, deleted, updated). However,
we have a much finer grained look on code objects as we do not use files to store
the source code.

5 Summary and Outlook

With the work done so far, there are three libraries to enable CouchDB as one of
the persistency layers that the Lively Kernel can rely on. These three libraries are:
the Code Database API which is based on the simple JavaScript API to interact
with a CouchDB instance, the Code Database Browser which was created on top
of the Code Database API and the small library of core enhancements of the
Lively Kernel to make CouchDB databases a valid source to load and execute
source code from.

On the CouchDB side there is only one design document that contains all
the map/reduce functions to let the core extension and the Code Database
API query the database. And this document can easily be installed on a new
CouchDB database by simply pointing the Code Database API or the Code
Database Browser to the database URL and instructing it to "livelyfy" that
database.

To conclude by now there is a transparent replacement of the current persis-
tency from the perspective of the source code and revision management.

Nevertheless there are still some points missing that need further work. One
of it is that the entire Lively Kernel source code has to be imported into one
database. Doing this there also has to be done some clean up and extension work
since the current JavaScript code used inside the Lively Kernel does not only
consist of modules, classes and methods/attributes but of some plain JavaScript
code to create the base of the system (like the namespaces etc.). Furthermore
there are not only JavaScript files that make the Lively Kernel but also XHTML
files containing all the elements inside a "world". Either there has to be a way to
convert that XHTML files to CouchDB documents too or these files have to stay
inside a parallel Subversion repository.

Lively Code Database 11

As final ideas of what might be coming next, there still is some work to do
on transactions and a better conflict resolution when saving source code to the
code database. Also the previously discussed option to use different revisions of
the same module or class and the tagging of a revision as version might add a
great flexibility to the Lively Kernel.

References

1. Pilato, M.: Version Control With Subversion. O’Reilly & Associates, Inc., Sebastopol,
CA, USA (2004)

2. Anderson, J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide Time to
Relax. O’Reilly Media, Inc. (2010)

3. Anderson, J.C.: Simple document versioning with couchdb. http://blog.couch.
io/post/632718824/simple-document-versioning-with-couchdb (2010)

4. Pelrine, J., Knight, A., Cho, A.: Mastering ENVY/Developer. Cambridge University
Press, Camebridge, United Kingdom (2001)

5. Loeliger, J.: Version Control with Git. O’Reilly Media, Inc., Sebastopol, CA, USA
(2009)

6. O’Sullivan, B.: Mercurial: The Definitive Guide. O’Reilly Media, Inc., Sebastopol,
CA, USA (2009)

7. Wingerd, L.: Practical Perforce. O’Reilly Media, Inc., Sebastopol, CA, USA (2006)

http://blog.couch.io/post/632718824/simple-document-versioning-with-couchdb
http://blog.couch.io/post/632718824/simple-document-versioning-with-couchdb

	Lively Code Database
	Motivation and Goals
	Implementation
	High-Level Architecture
	Code Database API
	Code Database Browser
	Kernel Extension

	Discussion
	Related Work
	Summary and Outlook

