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Abstract

In this project we evaluate the use of JavaScript as a general-purpose pro-
gramming language, using the Lively framework. We implemented several ap-
plications within the Lively system to seek insights into both the language and
the programming environment, exploring claims and techniques found in the lit-
erature. We examine the prototype-based paradigm and the benefits and draw-
backs of interactive programming for application development.
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Chapter 1

Introduction

JavaScript, or ECMAScript, is often used as a secondary programming language embed-
ded in other systems, but has rarely been used as a language in its own right [10, 11]. Be-
cause JavaScript has primarily been used as a “glue” language in the past, and was built
for this purpose at Netscape, it has had little attention as a general-purpose language until
recently. Using JavaScript for top-level development uncovers areas of the language that do
not appear in its most common usage as part of web pages, and may show strengths and
weaknesses of its approach [18, 26].

Lively for Qt [2] is an environment in which applications can be written in JavaScript
and run alongside each other in a visual workspace. These applications are cross-platform
and dynamic, and can be run both via the web and on a client machine. Many applications
can run alongside one another in a “world” and can be manipulated, added, and removed
by the end user. Each application executes in a shared namespace and is able to see the
applications around it.

In this project we evaluated the suitability of the JavaScript language and the Lively
platform for general development. We sought an overview of the capabilities of the system,
and to establish for which tasks it is suitable or unsuitable. We also explored the advan-
tages and disadvantages to software development that resulted from such a highly dynamic
programming language and environment.

We carried out the project by implementing several applications within the Lively frame-
work. We chose several relatively small applications to implement, with the aim that they
be independently useful and address different aspects of the system. We also wanted to
experiment with the reflexive nature of Lively and “interactive programming”, so we im-
plemented some programming tools which we were then able to use in developing other
applications.

Because the Lively system allows many applications to run alongside one another in a
shared space, we explored the idea of linking multiple smaller applications together within
the environment. In this way our applications are able to use the functionality provided by
one another as a part of their own operation. This facility is not available in many other
systems and is one of the novel aspects of Lively, so our applications provide the maximal
opportunity for connection to each other. We extended this connectivity to modifying built-
in applications, developing a standard interface to allow unrelated software to communicate
with minimal coupling.

We chose our target applications in order to test the claims of the literature, and in re-
sponse to the successes and obstacles we found in implementing earlier applications. In
particular, we wanted to explore the claimed high interactivity in the Lively system, and
what advantages or disadvantages it provides to the programmer. We also wanted to test
how easily an existing program written in JavaScript could be extended with new function-
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ality using the dynamic and prototype-based features of the language, as this is a key claim
of advocates of prototype-based and dynamic languages [24, 29, 18].
Our objectives in conducting this research project were:

• To evaluate JavaScript as a language for general-purpose development. We considered
the language from the perspective of development speed, correctness, and maintain-
ability, and made comparisons to some other languages.

• To evaluate the Lively system as an environment for application development. We
examined the system from the perspective of interactivity and accessibility, and inves-
tigated what unique opportunities it provides for connecting applications together.

• To experiment with interactive programming, and to utilise the reflexivity and dy-
namism of the programming environment given by Lively and JavaScript to produce
an interactive tool for examining and developing applications in the system.

Contributions

This project makes the following contributions:

• Tested the claim of rapid prototyping when using JavaScript for development.

• Evaluated Qt and the QtScript bindings for development.

• Showed practical situations in which the that pointer is a useful addition to a pro-
gramming environment.

• Demonstrated that single-purpose GUI applications can be usefully connected to each
other.

• Built a reflexive introspection and interactive development tool for the Lively system,
and showed that interactive programming is a useful approach.

• Constructed a partial aspect-orientation system for JavaScript.

This report is structured as follows:

Chapter 2 describes the distinguishing features of the JavaScript language and its history,
and the Lively environment. We also discuss some related work that forms the background
for Lively.

Chapter 3 discusses the approach we have taken to the project, and why we chose this
approach over other possibilities. We describe the applications we built from a user per-
spective.

Chapter 4 contains implementation details of the applications, and observations on JavaScript
and Lively we made while writing them. We also discuss the partial aspect-oriented pro-
gramming system built as part of our introspection tool.

Chapter 5 contains our judgements about JavaScript and Lively from implementing those
applications.

Chapter 6 has our conclusions.
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Chapter 2

Background and related work

We use JavaScript for all development in this project and build on past research into the
language. Our applications run under the Lively environment. In this chapter we describe
the background of both the language and the environment, and the JavaScript bindings to
the Qt toolkit that we use.

2.1 JavaScript

JavaScript is a prototype-based dynamically-typed object-oriented imperative programming
language developed at Netscape to be embedded into its browser and used in web pages.
It was standardised as ECMAScript [10], and all non-Netscape implementations are techni-
cally of ECMAScript.

The name “JavaScript” is a trademark of Oracle Corporation (as the successor to Sun
Microsystems), and is used under licence by Netscape and its successors to bless their ref-
erence implementation of the JavaScript language under a 1995 cross-marketing agreement
between Sun and Netscape. The Mozilla Foundation’s version is the only JavaScript, and
they periodically release new versions independently of the standardisation process. Other
implementations are of ECMAScript, including the QtScript used in this project. The lan-
guage is conventionally known as JavaScript, including in the IETF MIME type[13], and we
follow this convention here.

In a prototype-based language objects share behaviour by being based on another “pro-
totype” object, rather than by having a static class distinguished from instance objects [24,
17], so inheritance is from another object in the system instead of from a class. The JavaScript
object system is prototype-based, inspired by Self [30, 29, 31], in contrast with the classical
approach of almost all other popular object-oriented languages. It is also possible to have a
non-classical object-based language without prototypes [20], but discussing this situation is
not within the scope of this project.

There are two methods for implementing prototypes: concatenative and referential pro-
totyping [25, 9]. Concatenative prototyping as used in Self involves conceptually copying
the prototype at the time of creation, and applying instance-level changes to this new object.
With referential prototyping, the object stores a reference to its prototype, and forwards in-
coming messages that it does not handle itself. In a language with referential prototyping
subsequent modifications to the prototype object affect all children, while with concatena-
tive prototyping the entire prototype for a new object is frozen at the time of creation.

JavaScript uses referential prototyping, with a hidden reference to the prototype in each
object instance created implicitly on creation. The prototype is assigned as a property on a
constructor function, which is in other respects an ordinary function, and the reference to
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this object is copied as a side effect of the new operator as follows:

1 function SomeConstructor(arg1 , arg2) {

2 // ... initialise object ...

3 }

4 // { key: val , ... } is a pure object literal

5 SomeConstructor.prototype = {aProperty: 42};

6 var x = new SomeConstructor('hello', 'world ');

7 x.aProperty == 42; // true

8 x.aProperty = 1729;

9 var y = new SomeConstructor('java', 'script ');

10 y.aProperty == 1729; // false

Figure 2.1: Code showing property behaviour of prototypes

Object properties can be looked up in two ways: using the “.” operator as above, or
as a table lookup in the form obj[key]. Any member lookup on an object for a property
it does not have itself will be looked up in the prototype. The prototype object can itself
have a prototype, creating a chain of inheritance. When an assignment is made to an object
property, the value is stored in the target object itself rather than the prototype, even for
existing members which were defined only in the prototype.

Methods in JavaScript are simply first-class functions assigned as members of an object.
Functions that are called via object dereference, using the “.” or “[]” operators, have access
to a special “this” pointer which refers to the receiving object. “this” always refers to
the object on which the lookup was first performed, and not to the prototype containing
the function. It is a run-time error for a function to attempt to access “this” when it was
not called as a method, and the pointer is not available to other functions defined or called
within the method’s lexical scope.

A function can also act as a closure. Functions retain access to local variables defined in
the enclosing scope when they are later invoked from outside that scope. The function will
see any subsequent changes to the values of variables and can update them itself. Functions
do not close over this, so functions needing access to methods or data on the surrounding
object require additional bookkeeping to create a viable closure, even when called locally.

Subclasses in this structure are copies of a prototype object (which may be an instance of
an existing “class”) with some of their properties changed. These are cheaply created and
require only a function definition for the constructor [24]. There is no distinction between
an object created from a constructor and one that has had its properties modified to match
directly, which also makes singleton subclasses trivial. Properties may include both data
and functions (methods), and any that are not explicitly set directly on the object will be
retrieved from the prototype chain when required.

JavaScript values can be other objects, numbers (double-precision floating-point), strings,
booleans, functions, or undefined (a primitive type). Numbers, strings, booleans, and func-
tions are defined primitives, while all other values are objects. JavaScript Arrays are objects
with array-like methods defined on their prototype. Arrays are treated identically to other
objects with the exception of the “length” property, which is always greater than the largest
integer key in the array. Arrays are sparse, storing elements in the table in the same way
as other members, and are not arrays with contiguous memory in the sense found in other
languages. All keys in arrays and other objects are converted to strings using the built-in
toString method before storage. All properties are mutable and may be set and changed
on an object.

While JavaScript is ubiquitous for HTML scripting, it has only recently begun to be used
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for more general-purpose tasks outside the browser environment. node.js is a JavaScript-
based system for writing applications based on the V8 engine from Chromium [4]. node.js
is intended principally for building the server side of web-based applications, but provides
a general-purpose environment for event-based development. The Adobe Integrated Run-
time is used to build desktop applications using Adobe’s JavaScript implementation [6]. As
well as these uses the language is deployed in the browser for increasingly complicated
web-based applications that stretch the boundaries of the “scripting” categorisation.

In this project we use an implementation of ECMAScript 3. The most recent ECMAScript
standard [11] defines a number of extensions to the language, predominantly in the stan-
dard library. These extensions are not part of QtScript and are not available for our code.
ECMAScript 5 also includes a “strict mode”, a variant of the language where the runtime
engine is less forgiving of errors that the language otherwise allows to pass for compatibil-
ity reasons [11, p4]. The strict mode of the language is optional, and enabled at the level of
code objects (programs and functions). We have noted where these changes in the language
would be relevant to our analysis.

2.2 Lively

Figure 2.2: The Lively Kernel

The Lively Kernel [3, 15] (figure 2.2) is a programming environment for JavaScript ap-
plications. These applications run alongside each other in a visual environment inspired by
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Figure 2.3: The default Lively for Qt environment

the Squeak Smalltalk programming environment [5, 7, 14] and Self before that [30], running
within a commodity web browser [28]. The Lively Kernel is a very dynamic and interactive
environment, presenting an interesting area for development.

Applications built with Lively are cross-platform, dynamic, and securable, and can be
run both via the web and independently on a client machine [26]. Many unrelated applica-
tions may run simultaneously in the same Lively “world” (similar to a desktop), and may
be manipulated, added, and removed by the user. All applications and Lively itself run in-
side the same JavaScript interpreter environment. The way that applications may run in the
same environment makes for a different pattern of development from the standard desktop,
server, or web application, as the applications are neither entirely self-contained nor under
shared control.

Lively for Qt [2, 19] (figure 2.3) borrows most of the structure of the Lively Kernel but
runs inside the environment of the Qt toolkit [21], including bindings to native widgets
[22]. Qt (“cute”) is a cross-platform C++ widget toolkit now developed by Nokia, which
uses it as part of its mobile development platforms. Qt provides a complete set of user
interface widgets, using native widgets where available. QtScript is Nokia’s implementation
of ECMAScript, and includes bindings for most Qt classes. The goal of the Lively for Qt
port is to create cross-platform applications with native appearance everywhere, including
mobile environments [19]. Operating with native bindings allows new functionality that is
not possible in the browser embedding of the Lively Kernel, in particular filesystem access,
and avoids a jarring change of appearance between Lively and native applications. Building
applications that can run equally on desktop computers and mobile phones was a goal of
both Sun and Nokia, and Lively for Qt aimed to support native appearance rather than
HTML [19].

Lively for Qt includes a number of prebuilt applications, both ports of existing appli-
cations from the Lively Kernel and new applications to make use of the Qt functionality.
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Figure 2.3 shows some of these applications from the default home screen. Figure 2.3 in-
cludes several examples of the native user interface widgets that Qt makes available.

Interactive programming is the approach of developing software while it is running,
as in Lisp, Self [31], and Squeak [5]. Both the Lively Kernel and Lively for Qt aim to aid
interactive programming, providing a built-in tool for the user to execute JavaScript code in
the scope of the environment. Also in pursuit of this goal is one of Lively’s novel features,
the that keyword [27]. “that” refers to the application currently with the focus. The user
may programmatically manipulate and inspect the object in the system with which they are
interacting, to help rapid development of new functionality. that is in the global scope and
available from any code. Aside from the “Evaluator” there is no editor. The Lively Kernel
includes an Inspector with some facility for viewing, but not modifying, the methods and
properties of a class, but the Inspector is not available in the version of Lively for Qt we
used.

2.3 Qt Bindings

Qt provides a complete set of user interface widgets, as well as some other classes to abstract
access to the filesystem and other aspects of the host. The native Qt widgets have JavaScript
bindings corresponding to the structure of the native C++ bindings. They are namespaced
in JavaScript objects to parallel the structure, so Qt.KeyLeft in JavaScript corresponds to the
Qt::KeyLeft constant, and the same for other functions and methods. Top-level widgets are
exposed as constructor functions: a QPushButton is created as new QPushButton("Label"),
and similarly for other widgets and classes.

Qt widgets provide zero or more “signals”, named events which the widget can raise in
response to user actions. The JavaScript bindings expose signals as properties of the widget
object, and callbacks can be bound to the event using the bind method:

1 var button = new QPushButton("Click me");

2 // 'clicked ' is one of the signals provided by QPushButtons.

3 button.clicked.bind(function () { /* do something in response to

click */ });

Figure 2.4: QtScript signal binding example

A signal may have multiple callbacks associated with it, which are triggered in an unspeci-
fied order. Some signals do not correspond to user actions, but rather timer or paint events,
but all follow the same mechanism for registration and invocation.

Where Qt’s C++ interface has overloaded methods or constructors the JavaScript bind-
ings generally provide access to all variants. Although JavaScript does not have overload-
ing, strong typing, or fixed method arity, the script bindings attempt to resolve arguments
into suitable native types and dispatch to the correct method. In some cases only a subset
of the overloaded versions of a method is available, which we believe to be an artifact of
limitations in the bindings’ dispatch infrastructure, but the documentation does not provide
a definitive answer. Some native classes are also missing entirely: parts may have been
omitted by choice or not yet implemented.
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Chapter 3

Design and Methodology

Our approach to this project was dictated by pragmatic concerns of flexibility and practical-
ity within the time available. In this chapter we outline the approaches we considered, and
describe the details of the method we chose.

3.1 Approach

We considered several possible methods for evaluating the JavaScript language before set-
tling on a suitable method for meeting our objectives. All methods had advantages and
drawbacks, but the balance of these traits and practicality within the time available guided
our decision. The selected approach needed to allow us to assess both JavaScript and the
Lively environment, and also needed to incorporate experimentation with interactive pro-
gramming, which is one of the claims made about Lively.

Case studies One approach is to examine already-existing case studies to see what infor-
mation they can provide about JavaScript. These have the potential to provide good insights
into the language, but there are few if any such studies available that use JavaScript as a
general-purpose language.

Algorithm contests We could examine entries in algorithm contests written in JavaScript,
and potentially compare them to entries in other languages. There are many contests and
suitable entries to use here, but algorithm contests are not representative of normal usage of
a language and could be misleading.

Lab experiments Another possibility is to conduct lab experiments, where the test sub-
jects would write some JavaScript code under observation. A major design constraint on
this is finding a suitable test population of programmers with JavaScript knowledge, and
evaluating the language based on these observations and feedback may not be reasonable.

Usability tests We could run usability tests on Lively in the same way as lab experiments
on JavaScript, with largely the same constraints. It would also be impossible to get an accu-
rate picture of Lively without also evaluating JavaScript, and separating the two would be
problematic.
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Corpus analysis We could conduct a corpus analysis to determine when the language is
being used for scripting and when as a general-purpose language. That classification is
fraught, especially when imposed after the fact, and a suitable corpus does not appear to
exist.

Development experience In this approach we would write code, implementing some ap-
plications in the system to see what we could learn from them. The major drawback of this
approach is generalisability; the programming evaluation is limited to the actual program-
mer’s perspective, which may not apply in other circumstances.

3.2 Application development

Our chosen approach was to develop applications. We considered that reflecting on devel-
opment experience was reasonable to conduct within the scope of the project and should be
flexible enough to adapt to new information we discovered while carrying out the project.
To this end, we have implemented a number of applications in JavaScript and Lively. We
experimented with different techniques to discover what works and what does not, and to
make a qualitative analysis of the language and environment. We chose six broadly-defined
applications. These are:

• Calculator

– A simple desktop calculator.

– A Reverse Polish Notation (RPN) calculator, extending the simpler calculator.

– A scientific calculator capable of working with functions, also extending the sim-
ple calculator.

• A charting application.

• An implementation of Conway’s Game of Life for profiling purposes.

• A versioning text editor

• A syntax-highlighting in-process JavaScript code editor

• An introspection and profiling tool.

Figure 3.1 shows of some of these applications in operation. We selected the applications
from those that did not already exist as part of the Lively system, focusing on variety of
approach and the potential to explore different areas of the system. We also wanted to
experiment in interactive programming, as this was one of the claims made about the Lively
environment, so the introspection and editing applications were important selections. If
there were more time available in the project we would have chosen more applications, but
these gave a good balance of aspects of the system: some are an interface around relatively
simple code, some have complex algorithms inside, and some aid interactive programming.

In the rest of this chapter we present the applications we developed, from the user’s per-
spective. We reflect on the implementation in the next chapter, and evaluate the JavaScript
language and Lively based on our experience in chapter 5.

10



Figure 3.1: RPN calculator, Charter, and Game of Life

3.3 Calculators

We chose to begin by building a simple calculator, as a way to explore the capabilities of the
system and learn to use the Qt GUI library. A calculator was a well-defined and relatively
simple project, which had room for extension later on. As there was no previously-existing
calculator application in Lively for Qt this subproject was also immediately useful.

The simple calculator uses the stock Qt widgets for buttons and text rendering. The vi-
sual button layout uses one of the toolkit’s built-in layout managers to mimic the structure
of a physical calculator. Each button press immediately triggers an action. The simple calcu-
lator is only able to perform simple arithmetic calculations with strict left-to-right evaluation
order.

Following the simple calculator we built a Reverse Polish Notation calculator by extend-
ing the simple calculator, as a first test of the prototype-based inheritance mechanism. The
RPN calculator stores operands on a stack, and so has quite different internal functioning
than the simple calculator, but still uses an instance of the simple calculator as its prototype.

The scientific calculator evaluates an expression rather than performing operations in-
stantly, and supports including variables in this expression. Like the RPN calculator this
application extends the simple calculator, making many more changes to the internal work-
ings but still using the framework of it. The user interface in particular is almost entirely
shared apart from some additional controls. This calculator provides a source of continuous
data for the charting application. Figure A.1 shows all three calculators in action.

3.4 Charter

A charting application was part of the original plans for the project, but we expanded its
scope while the project was underway. This application makes visual plots of data provided
from other applications in the system. The Charter is able to plot continuous data (provided
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Figure 3.2: Charter displaying data from weather applet

by the scientific calculator, figure A.3), discrete data (provided by the RPN calculator and by
the weather applet, figure A.2), and time-series data (provided by the Game of Life, figure
A.4). The application accesses this data by way of a standard and flexible interface, so it
can potentially connect to any other application in the system. Applications may provide
notification that their data has changed, which will automatically trigger a refresh of the
visualisation.

3.5 Introspector

One goal of the project was to experiment with the language and environment’s interactivity
by producing a full profiling, visualisation, and monitoring tool for the Lively environment,
to aid debugging and interactive programming. The Introspector examines other applica-
tions in the system, recording and displaying the available control-flow information.

Figure 3.3 shows the Introspector examining an instance of the RPN calculator. The user
selects an application by clicking the “Watch” button and then selecting the other applica-
tion, in the same way the Charter finds a data source. The methods of the application are
displayed as the blue rectangles in a grid formation, with arrows between them indicat-
ing calls from one to the other. Yellow arrows show very recent calls, and will fade back
to green over time. The methods automatically rearrange to move related methods (those
which call each other) closer together, resulting in a natural partitioning betweeen differ-
ent areas of functionality in the visualisation. When there are more methods than fit in the
display the Introspector can be resized, with the method grid expanding and adding new
rows and columns when space allows. The visualisation updates in real time, whenever the
outermost method triggered by an external action terminates. The user can watch the effects
of their actions as they occur, with the highlighting showing the full chain of method calls
they have triggered. This can help to track bugs or document the behaviour of an existing
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Figure 3.3: Introspector examining an RPN calculator instance
(a) lists the objects being inspected; (b) shows the methods on the selected object, while (c) shows its non-method
properties and their values; (d) is used to display any textual data required by other parts of the system, and
currently shows statistics about the execution of a selected method.

system.

As a large part of this project was exploring connections between applications, the Intro-
spector is also able to watch multiple applications at once. The user clicks the “Collaborate”
button and then selects the other application to examine. The methods from each applica-
tion display in different colours, making the inter-application method calls obvious. These
points of interface are difficult to track otherwise. The left-hand list box, labelled (a) in figure
3.3, lists the applications currently being observed. The user can select one to see its meth-
ods and properties listed in boxes (b) and (c), and can select one of the methods in (b) to see
all of the collected statistics about that method in the text area at the bottom. These statistics
include the number of times the method is called, how long it has run for, and which other
methods it has called from this or other observed applications. These statistics can be plotted
by connecting the Charter application (figure A.5). Clicking “Edit” will provide the source
code of the method (if it is JavaScript) for the user to view, edit, and save into the running
application. The code is displayed in the text area, or in a connected text-editing application
with more advanced features if one is present. The Introspector can also eavesdrop on all
method calls, parameters, and return values, and display them to the user. This mode is en-
abled with the “Listen” button, and shows the structure and nesting of all detected method
calls in the text area. Listening in this fashion can produce a lot of data very quickly, and
slows down the target application significantly, so it is not enabled by default.
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3.6 Conway’s Game of Life

This application is an implementation of Conway’s Game of Life, simulating a cellular au-
tomaton and rendering its state to the screen with each iteration. The application acts as a
time-series data source to the charting tool, giving the number of living cells at each iteration
(figure A.4). The implementation performs very many calculations each iteration, so it has
the potential for optimisation and performance measurement. We implemented the simula-
tion using a fairly simplistic approach involving many nested method calls, providing both
interesting information and a challenge to the Introspector.

The application led to the discovery of one of the major drawbacks in the implementa-
tion of Lively for Qt: it is transparently multi-threaded, and runs GUI and timer events in
different threads. We will discuss the implications of this fact in more detail later, but for
this application it rendered the entire system unusable above a particular scale, and led to
unpredictable failures at smaller scales. The Introspector was a great help in discovering
this behaviour, which also explained some previous errors in the Introspector itself. These
errors were unavoidable within the framework in use.

3.7 Versioning text editor

The versioning text editor provides a basic text editing environment with the ability to roll
back to previous versions of the document. It uses Qt’s native textbox widget for the basic
editing functionality, and several other widgets and dialogue boxes for other functions. It
makes the widest and most varied use of the native Qt functionality of any application
implemented in this project, and also makes heavy use of the ability to access the filesystem.

This application is able to connect to the Introspector and be used to edit methods on a
watched object (figure A.6). The Introspector implements the same interface used for con-
necting the Charter and other applications together, extended to allow string and function
data sources. While the function can be edited in the application’s textbox otherwise, when
connected to the versioning editor it is possible to roll back to previous versions of the func-
tion (even those whose changes were not made by the versioning editor). This is possible
because the Introspector keeps track of the chain of original methods when it updates them,
and is able to retrieve the code in order to pass it on through the data source interface. This
feature is an aid to interactive programming on the system that is not otherwise available
from Lively.

3.8 Syntax-highlighting code editor

This syntax-highlighting editor uses Qt’s HTML rendering functionality to display coloured
code text. The application includes a simple JavaScript tokeniser and parser and updates the
highlighted rendering on changes to the document. This editor can also be used to edit code
in the running system, and we used it for development during the later stages of the project.

The editor can manipulate code in the running system in two ways: editing methods
on existing application objects, and evaluating fresh code. This editor can connect to the
Introspector in the same way as the versioning editor, displaying the highlighted code of
the currently-selected method for editing and able to save it back when changes have been
made. This editor can also load and save code from files, and can evaluate the code in the
global scope. Evaluating code directly allows editing constructors and prototypes, adding
new functionality to existing applications, and creating new applications.
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Figure 3.4: Highlighting code editor editing its own code

Once this editor was usable we used it for all our subsequent coding in the project. While
there was a large adjustment involved in switching from Vim to the internal editor, we
found that being able to evaluate changes immediately, without terminating and restart-
ing the Lively for Qt system, was very helpful for development. We were able to make
small changes and test them alone, rather than making several changes to test together. We
could also edit the code of a particular instance of an application, allowing us to compare
the behaviour of two different versions of the code.

We found that this editor filled a gap in the Lively environment. The built-in applications
from Lively for Qt do not include an editor, which made interactive development challeng-
ing. In the earlier stages of the project all our development was outside the system, and even
once the Introspector was in place we only made small modifications while the system was
running. This editor provided most of the essential functionality of a programming editor
and allowed us to modify whole applications. If a useful editor were part of Lively from the
start we might have followed a different development path.

While this editor is conceptually similar to the versioning editor it has a very different
implementation with virtually no code in common. The highlighting editor implements its
own text-handling and transforms the code into HTML for display, while the versioning
editor delegates all text functionality to the underlying Qt text area widget. The two appli-
cations are not fundamentally incompatible and could be combined in one, but we did not
have the time in this project.
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Chapter 4

Implementation Discussion

In this chapter we describe aspects of the language and environment we encountered during
implementation that do not pertain to the applications themselves. These aspects are facts
about the systems that weigh on our evaluation. We also describe how we addressed the
issues we mention where appropriate.

4.1 JavaScript

During the project we encountered some aspects of the JavaScript language which raised
unexpected issues. In this section we describe the unexpected behaviours and limitations of
the language, including what methods we found for working with or around the function-
ality.

4.1.1 Prototype-based programming

The RPN calculator uses as its prototype an instance of the basic calculator, and so obtains
all of the structure and functionality of the original calculator through code reuse. For the
initial development of the calculator we also worked by extending an existing calculator
instance, which the dynamic system allows. The way in which prototypes are specified
lends itself to this type of development:

1 function RPNCalculator () {

2 // Constructor

3 ...

4 }

5 RPNCalculator.prototype = new Calculator ();

6
7 RPNCalculator.prototype.equalsClicked = function () { ... }

8 ...

Figure 4.1: Prototype definitions

The prototype object here is a fully-functioning RPNCalculator-like application. It has
the appearance and behaviour of an RPNCalculator, built up on top of the base Calculator
instance. The prototype instance is usable during the development process and we can test
the behaviour we have added on the running instance, modifying it in place if it is not
correct. When the object has the behaviour we want we can set it as the prototype, adding
the facility to create more similar objects on demand once we have a functioning system.
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4.1.2 Constructors

A subclass must trigger the constructor of its superclass in order to initialise itself properly.
JavaScript itself does not require this in all cases, but initialising the native objects corre-
sponding to their JavaScript analogues does require that the QWidget constructor is called
before any other Qt methods are called on an application. The subclass can call this directly,
or it can invoke its superconstructor and perform all the necessary initialisations indirectly.
While JavaScript has no syntactic support for accessing the superconstructor there are two
other methods available:

• The constructor can be invoked as a function from within the subclass constructor.
JavaScript function objects have a call method which invokes the function with a
given recipient binding and parameter list. This is how the QWidget constructor must
be invoked:

1 function MyWidget(parent) {

2 QWidget.call(this , parent);

3 ...

4 }

Figure 4.2: Invocation of superconstructors with call

This method invokes the QWidget function as it exists at the time of the construc-
tor call. In the case of QWidget, this is probably the expected behaviour, but for a
user-defined object it may not be, particularly in the presence of interactive program-
ming. When programming interactively, any changes to the required initialisation of
an object means replacing the constructor function, but existing subclasses will have
prototypes built with and expecting the setup of the original function and may break
when data is different from what they expect.

• We can store the constructor used for the prototype as a member of the object, and
simply invoke it using ordinary method dispatch when required. The constructor for
our object can invoke this.SuperConstructor(), which will have the correct recipient
binding without using call.

If we invoke the superconstructor by name and a new function of the same name has
been defined since we may encounter unexpected errors. The function may initialise
the object differently than our prototype expects. These errors can be particularly an-
noying during an interactive programming session, when we can lose progress in an
interpreter crash. Interactive programming is also the most likely time for a function
to be re-bound in this way.

We have used the second method for most of our superconstructor invocations as it more
often gives the expected behaviour. We use the first method for QWidget calls as it has less
overhead and it is never desirable or useful to overwrite the base QWidget constructor, as it
would no longer perform the necessary native initialisation.

4.1.3 Algorithmic performance

The versioning editor implements a version of the Patience Diff algorithm[8] for both dis-
playing the differences between versions to the user and saving the versioned file more effi-
ciently. This is a well-defined nontrivial algorithm based around longest-common-subsequence
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calculation, which we chose for these properties as a means of evaluating JavaScript’s algo-
rithmic suitability. Implementing the algorithm in JavaScript was more difficult than ex-
pected because of limitations in its array and mapping functionality, but the final algorithm
calculates differences correctly and is functional for moderately-sized inputs. Diffing texts
larger than around a hundred lines is noticeably slow, and inputs much over 200 lines be-
come intractable to the point that we are not sure whether they eventually terminate or have
crashed the runtime engine.

We ran performance tests on the diff algorithm, calculating differences between two
randomly-generated lists of “lines” of varying sizes, testing each size 90 times. The lines
consisted of one of four symbols chosen at random. These lines are much shorter than real
text lines, and incur less performance penalty from string manipulation, but still show a
marked slowdown as the size increases. There is a notable jump between 150 and 175 lines,
and beyond that point the increases in average time are much larger than before. For 250
lines and above the calculation did not terminate within three minutes.

# lines Avg. time (ms)
25 18
50 24
75 31

100 33
125 38
150 45
175 97
200 125
225 133
250 Did not terminate

Figure 4.3: Average running times of our diff implementation for different sizes of input

4.1.4 Standard library

The diff algorithm used in the versioning editor relies on many array manipulations, which
are expensive with JavaScript’s string-keyed pseudoarrays, and also depends on a degree
of memoisation to make calculation tractable. Some parts of the algorithm would have
been much simpler with the new native features in recent versions of Mozilla’s JavaScript
and the ECMAScript 5 draft. Mozilla’s JavaScript 1.6 and ECMAScript 5 include functional
array extensions including map, filter, and reduce operations, which are executed as native
code by the runtime engine and able to be much more efficient than JavaScript-implemented
versions. These features are not available in the version of the Qt Script Engine used for this
project.

We would also have appreciated some additional extensions to the Function type. Creat-
ing bound functions (with a defined receiver object) is complicated in JavaScript, as closures
do not include this and the function to be bound must be re-invoked dynamically with the
parameters forwarded through the apply method. ECMAScript 5 includes a bind method,
which addresses much of this difficulty, but any other manipulations on functions are chal-
lenging to implement from JavaScript and would benefit from native methods. We would
have found it especially useful to be able to clone a function, and to manipulate the closure
of a function directly rather than having to use the with structure at definition time.
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4.1.5 Qt callbacks

When binding callback functions to Qt signals (section 2.3) we have added a layer of indi-
rection around the methods of our application. In our code signal bindings have this form:

1 var openButton = new QPushButton("Open");

2 openButton.clicked.bind(this , function () {this.openClicked ();});

3 // Does not work correctly:

4 openButton.clicked.bind(this , this.openClicked);

Figure 4.4: Sample code binding an application method to a Qt signal

While we want the callbacks to invoke behaviour from the application, two traits of the
callback system make binding the methods themselves problematic:

• Qt events bound using the built-in connect method bind a function. Functions do not
include a binding to this, so the callback would not be able to access our application
data.

We later discovered an undocumented behaviour that allowed specifying the receiver
as an additional parameter (as used in figure 4.4), rendering this part of our original
reasoning invalid. This is one of many examples of incomplete documentation for the
Qt Script Engine that we encountered.

• Function bindings from connect are early-bound at the time of the connect call: it is
the provided function object which is called, not the named method on the application
that exists at the time of callback. If the method in that slot is subsequently changed,
which happens during prototype-based inheritance and in interactive programming,
the signal will continue to call the original function.

Method changes in an inheritor will always occur after the prototype’s constructor has
run, so any callbacks created within the constructor refer to the method from the un-
modified prototype. If these callbacks trigger mutating behaviour on the receiver this
would affect the prototype itself, and so propagate to every instance of the subclass.

If code executes with the following effect:

1 button.clicked.bind(this , this.buttonClicked);

2 this.buttonClicked = function () { // ... new behaviour ... }

Figure 4.5: Early-binding of Qt signals in code

then the final buttonClickedmethod will never be called, because the existing buttonClicked

function was registered with the Qt event. While code exactly like the above is rare,
prototype inheritance often has exactly this structure, and run-time changes to meth-
ods by interactive programming always suffer this problem.

JavaScript allows us to construct first-class functions inline, so there is no great incon-
venience in creating this indirection function: we need only add some brief boilerplate to
each of our signal bindings as in figure 4.4, but it is not the natural way of binding a callback
(shown in figure 4.5). Because the problem only appears later on in inheritance corner cases
and interactive debugging it can easily slip in unnoticed, creating difficult-to-track bugs.
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4.1.6 Threading

One of the major unresolved problems we encountered in the project was directly related
to the Qt bindings. Qt is inherently multithreaded, allowing it to provide non-blocking
methods and perform graphics painting on demand. These repaint events trigger JavaScript
code, if custom painting behaviour is defined, which can be running simultaneously with
other code. Timer events similarly run out-of-band in another thread. JavaScript is a single-
threaded language and provides no synchronisation or locking primitives; the combination
of these two factors caused data corruption and untrappable errors that we were unable to
work around. The QMutex class did not work from JavaScript code in the bindings used in
this project, but is conceivably one way of addressing this issue.

Threading also caused issues with the built-in debugger. Ordinarily, the QtScript Debug-
ger would launch when a JavaScript error occurred, showing which line triggered the error
and allowing us to inspect the state of local variables. However, during a repaint event in
any thread the debugger is suppressed, because the paint event was treated as uninterrupt-
ible. As well as making debugging the painting code itself nearly impossible this behaviour
allowed errors in other code to pass silently at unpredictable times.

4.2 Lively

The Lively environment presents many novel features which were discussed in chapter 2. In
this section we describe the functionality we found that was not described in the literature,
and discuss the implications of this additional functionality.

4.2.1 Inter-application connectivity

Connections between applications are possible because of the shared application environ-
ment that Lively provides, and the object model of JavaScript. All applications execute in
the same JavaScript namespace, and are able to see and access each other directly. The Char-
ter defines an interface for other applications to act as sources for particular kinds of data,
which can be supported simply by adding a method to the application object. The Charter
accesses this method directly and does not need any intermediary to interpret or pass on its
method calls.

4.2.2 “that” pointer

The Charter obtains a reference to the user’s specified application using the that pointer
(section 2.2). When the user wants to chart data from an application they need only start the
charter and click on a “Connect” button. If the charter is able to detect the other application
immediately (because the that pointer already refers to another application supporting the
necessary interface) it will update immediately. Otherwise, it uses a repeated timer callback
to detect changes to the that pointer and will adjust as soon as it detects a suitable referent
implementing the necessary interface. This gives the intuitive behaviour for the general
case, using the inbuilt capabilities of the Lively application environment.

Although the that feature was designed as an aid to interactive programming [27], as a
way to refer to and programmatically manipulate a particular object in the system without
naming it, it is also very useful for this type of inter-application interaction functionality.
When one application is able to obtain a first-class reference to another application, know-
ing that the user is currently interacting with it, it can adapt itself to the other in ways
that are much more difficult otherwise. We use this ability in both the Charter and editing
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applications, and some others provide target-application functionality. We discovered this
application of the feature during the project, and changed some of our application plans to
take advantage of it and explore its implications.

4.2.3 Inter-application interface

To implement the inter-application interface an application must provide a dataSources

method on its application object. This method returns an array of the data sources that the
application provides. Each data source is an object containing at least the type (“discrete”,
“continuous”, “text”) of data and a function which can be invoked to obtain the current
data for charting. There are several optional fields as well, providing for labels and display
suggestions. Many applications have only one data source (such as the calculators), and so
return a singleton array. Others, like the Introspector developed later, provide many differ-
ent sets of data and of varying types. We needed to accomodate both of these use cases, and
this combination of arrays and first-class functions fit this requirement. An earlier interface
used distinguished discreteData and continuousData methods on the application, but this
structure was unable to cope with multiple data streams from the same application.

The application should also provide an addListener method, which implements part of
the Observer pattern[12], for requesting notification when the available data changes. If an
application does not provide this method the rendered chart will update only intermittently,
when fundamental paint events are triggered by the underlying windowing system. Only
the dataSources method is required for an application to be treated as meeting the interface.

To test the suitability of this interface for general use, meaning with applications other
than those developed as a part of this project, and to discover any necessary modifications
to make it suitable, we implemented it in an existing application that ships with Lively itself.
Figure 3.2 shows the built-in weather applet, which we had already extended to display our
local weather, and a Charter instance plotting the current temperatures of various locations.
The weather application is well-suited for this test as it naturally works with the correct type
of data, key-value with a numeric range and arbitrary keys. We had some familiarity with
its coding style from the previous modifications, so we could focus on only the essential
difficulties of implementing the interface rather than needing to learn the structure of the
code at the same time.

Adapting the weather application to serve its data took under two dozen lines of code,
much of which was to deal with the newly-required bookkeeping of keeping track of its
previously-fetched temperature data instead of discarding it. Total implementation and
testing time was only a few hours. When new weather data arrives the application trig-
gers an update of the chart, a facility which required only four lines in the weather applet
and which is available to all other data sources as well.

4.3 Aspects

In this section we discuss our partial implementation of Aspect-Oriented Programming
(AOP) for JavaScript, used in the Introspector to instrument methods. While the structure
was designed for the purpose of instrumentation, the implementation is more general and
many parts of it have broader application.

4.3.1 Introspector implementation

The Introspector replaces all existing methods on the target application with instrumented
versions, calling the original method alongside some additional logging code encapsulated

22



in before and after functions. Constructing these functions accurately is complicated, and
discussed later in this section. Once a replacement function for a given method is defined a
reference to the original function is assigned to an originalMethod property on the replace-
ment. This allows the tool to revert its changes when introspection is complete and aids
some programming features developed later. The function is assigned to the correct slot on
the watched object and enumeration continues.

When all of the replacement methods are in place the Introspector begins collecting data.
The before and after functions collect and create both temporary and permanent records of
aspects of execution. They maintain a call stack, containing one element for each function
call currently executing. The before function initialises this element with the start time and
blank entries for recording internal method calls, and returns the arguments unmodified.

The after function calculates the execution time of the method and adds it to the total
recorded for that method. It also examines the call stack and adds a reference to the current
method in its caller’s entry if there is one, allowing the tool to track which methods call
which others, along with timing and call-count information. The data from any internal
method calls of the terminating method is transferred to the permanent record, and the call
record is popped off the stack.

4.3.2 Reflection

When examining an application the Introspector uses JavaScript’s built-in property enumer-
ation to trawl through the members of the object. Code of the following form:

1 for (var key in object) {

2 value = object[key];

3 ...

4 }

Figure 4.6: JavaScript property enumeration

will loop over every key in the object, which is accessed as if it is simply a string-keyed asso-
ciative array. The enumerated values include all methods of the object, including most meth-
ods inherited from the prototype (some built-in methods are marked “non-enumerable” by
the runtime environment). As a method in JavaScript is simply a function stored as an
object member, the methods can be found by testing typeof object[key] == 'function'.
The first pass of introspection builds two lists partitioning the key set into methods and non-
method properties. Both lists are displayed to the user, but the methods of an object require
additional processing to be useful.

4.3.3 Instance-level method modification

In order to collect statistics about method execution the Introspector instruments the indi-
vidual functions. Every method of the object is replaced by another performing the same
function but also causing other logging to occur. The structure of this replacement is some-
what complicated, but putting it into place once created is not. All JavaScript properties are
mutable and may be updated by simple assignment; assignment always occurs in the given
object, even when setting a property previously obtained from the prototype. The instru-
mentation does not affect any other instances of the watched application. An instrumented
application is no longer suitable for use as a prototype, but the necessary closures cannot be
saved to disk so it would be a poor choice of prototype in any case.

23



4.3.4 Dynamic method replacement

To construct a suitable replacement method the Introspector must run the original behaviour
alongside the instrumentation. The system can keep a reference to the original function to
be invoked, but doing so for a method that is not fixed at the time the introspection code is
written is nontrivial as passing on the parameters correctly to the inner invocation requires
some knowledge about what arguments the function expects, and JavaScript functions do
not provide this information.

The approach we have used combines four JavaScript features: first-class functions,
dynamic invocation, variadic arguments, and closures. A function object can be invoked
within a provided “this” context using its call method: func.call(this) will invoke the
function as if it were a method on the current object. Arguments can be passed as func.call(this,
arg1, arg2, ...). For an unknown function this is not sufficient: the arguments are not
known when the code is written. There are two potential ways to handle this:

1. Use the function’s length property and dynamic code evaluation with eval. The
length of a function is its arity, and dynamic evaluation can define new variables in
the local scope so the created function binding will be accessible after eval has com-
pleted.

1 // Functions stringify to 'function (a,b,c) { body }'

2 funcStr = func.toString ();

3 paramStr = ...;

4 var codeString = "return function(" + paramStr + ") {";

5 codeString += "// ... perform pre -execution actions ...";

6 // 13 is the length of 'function () {', the beginning of the

7 // stringification of a function. There is a closing '}' at the

end.

8 codeString += funcStr.substr (13 + paramStr.length , funcStr.length

- 14 - paramStr.length);

9 codeString += "// ... perform post -execution actions ...";

10 codeString += "}";

11
12 replacementFunc = eval(codeString);

Figure 4.7: Constructing function wrapper inline using eval

2. Use the apply method and the arguments pseudo-array for variadic arguments. The
apply method on a Function object invokes the function using a provided recipient
(bound to this) and an array of parameters:

1 // func and receiver are set appropriately in the enclosing scope

.

2 function wrapper () {

3 // ... perform pre -execution actions ...

4 func.apply(receiver , arguments);

5 // ... perform post -execution actions ...

6 }

7
8 replacementFunc = wrapper;

Figure 4.8: Dynamic method invocation using variadic arguments
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arguments is a special object created by the JavaScript engine, which contains the argu-
ments to the function stored like an array. The object is not a true array and has none of
the common methods from the Array prototype, but it does support the length field
and element retrieval in the same form. The object is available in any function, but is
most useful for implementing variadic arguments.

The first method is error-prone, because it requires generating code as a string. Our pre-
and post-execution code runs in the same scope as the wrapped function, and may interfere
with the original code unless we examine it very carefully. That method does not incur any
invocation-time performance penalty.

The second method addresses all functions equally, but will be slower at runtime. Any
mention of the arguments object in a function body attracts a performance penalty, regard-
less of how it is used, as the runtime must create and track the expensive object [10]. Given
the existing penalty of dynamic invocation and some of the necessary logging operations,
and the flexibility it allows, we chose to use the second approach in the Introspector.

4.3.5 Aspect wrapping

For each method on the object to be observed we create a replacement. The replacement
function calls another provided function before executing the original, and passes it the
object, method name, arguments, and the internal method ID used by the Introspector to
identify each wrapped method. This pre-invocation function has the opportunity to modify
the passed arguments, but the current implementation makes no use of this facility. The
original function is invoked via func.apply(obj, args), and another provided function is
called afterwards, passed the return value (also modifiable) instead of the arguments. This
structure allows the instrumentation to record method timings and call chains. The overall
structure of the replacement function is:

1 function () {

2 var args = callBefore.call(this , obj , prop , arguments , methodid

);

3 var returnValue = func.apply(obj , args);

4 returnValue = callAfter.call(this , obj , prop , returnValue ,

methodid);

5 return returnValue;

6 }

Figure 4.9: Structure of Introspector’s method replacement functions

Adding these before and after functions is akin to aspect-oriented programming. The
structure for applying them allows inserting arbitrary behaviour, not only the statistical log-
ging we use, and it was no more complicated to implement this generic wrapping than it
would have been to wrap in fixed logging code. While we do not use the ability to provide
arbitrary wrapping layers in our applications, the structure does allow for it. During debug-
ging we did use some different variants of the logging code to test the behaviour, which was
much simpler with the function-passing structure than a hard-coded system.

In a true aspect-oriented language like AspectJ these pieces of wrapping code would be
specified declaratively, with “pointcuts” identifying the relevant methods, and before and
after “advice” declared for applying behaviour at those pointcuts[1]. The structure we use in
this project is imperative instead, explicitly replacing each function found in an object with
another. The modification is also applied at the object instance rather than class level, al-
though the distinction between the two is less clear in JavaScript than in Java or AspectJ. We
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were able to add this behaviour directly within the JavaScript language, rather than need-
ing to extend the language, alter the source code programmatically, or run on a customised
virtual machine. Our extension to the system does not provide all of the functionality of
AspectJ, however, and is not able to intercept variable accesses or object instantiation. Vari-
able and field accesses cannot be intercepted in JavaScript without modifying the runtime
engine, but we can intercept any method calls easily. For the limited purposes we have in
this project our restricted aspect-like functionality is sufficient.

4.3.6 Scoping and closures

Maintaining the necessary state for the replacement function is also a nontrivial problem.
JavaScript functions act as closures, storing the enclosing lexical scope for the function body
to access. The language does not have block scope, however, so creating these functions in a
loop does not behave as would be expected for a similar feature in another C-like language.
A local variable in JavaScript is scoped to the entire function that contains it, so any closures
created within the function have a reference to the same variable even if it is declared inside
a loop body. Creating many closures inside a loop, all having different bindings for their
outer variables, is complicated by this trait of the language.

JavaScript keeps variable scope as a stack of objects, with variables looked up as keys in
each object in turn. Reads are made from the innermost definition (the closest to the top of
the stack), and writes to the nearest location where the key is defined, but otherwise in the
top-level (probably global) scope. The var declaration creates a variable binding in the local
scope that shadows an outer variable of the same name. A variable assigned without a var

declaration is implicitly global, regardless of the surrounding scope, which can lead to some
unexpected bugs. There is no error in redeclaring a variable multiple times, however, so we
found it best to be promiscuous with var declarations and include them almost everywhere
possible.

Any modifications that are made to a variable in a scope are visible anywhere else with
that scope in its stack, and anywhere with that scope in the stack can modify variables in
it at any time. A loop over method names that creates a function inside, for example, will
in fact create functions with access to only the last method name in the loop, and not to the
value of the variable at the time of definition:

1 function(methods) {

2 var closures = [];

3 for (var method in methods) {

4 var methodName = method;

5 closures.push(function () {

6 print(method);

7 print(methodName);

8 });

9 }

10 for (var i=0; i<closures.length; i++)

11 closures[i]();

12 }

Figure 4.10: Demonstration of JavaScript scoping and closure behaviour in
loops

The above function will simply output the last method name in the parameter array
repeatedly. Each function created refers to the same scope stack, and so when the binding
of method and methodName is changed on the next iteration the value accessible through the
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closure changes with it. In many other languages with closures of this form, such as Python
and Smalltalk, local variables are scoped to their containing block, and so methodName would
not be updated by subsequent assignments. JavaScript does not allow this technique, so
more complicated manipulations are required.

There are two ways to create a new entry on the scope stack programmatically1: function
invocation and the with statement. When a function is invoked, a new scope is placed on
top of its stack containing its parameters, appropriately bound, and which ceases to exist at
the exit of the function unless preserved in a closure. As JavaScript has first-class functions
this function can define another function inside itself and return it. The inner function will
inherit the entire scope stack of its parent as a closure, including the function parameters.
Calling such a higher-order function with parameters to close over is safe within a loop, and
was the original method we chose for this tool.

The with statement pushes an object onto the scope stack for its accompanying block.
Any variable lookups for members defined in that object will access the slot in it instead
of in any of the parent scopes. While this can be problematic with arbitrary objects, as it is
unclear where a given lookup or assignment will actually occur, it is safe and predictable
with an object literal:

1 for (...) {

2 with ({ originalmethod: meth , methodid: id}) {

3 obj[meth] = function () {

4 ...

5 }

6 }

7 }

Figure 4.11: Use of with to open a new scope

The function defined in this scope has access to the “originalmethod” and “methodid”
variables in its outer scope, which will not vary with reassignment on subsequent iterations.
This approach avoids an extra function invocation and keeps related code together.

Although the with statement is useful in this context, it is prohibited in the “strict mode”
of the most recent ECMAScript version, because it can be unsafe unless used with a literal
[11, p93]. As strict mode is optional, this technique is still applicable if the program is will-
ing to forego universal strictness. A non-strict function can be defined within strict code
using the Function constructor [11, p51], which takes a string containing code and creates a
function with that code as its body. A function created this way is only evaluated with strict
mode on if the function body itself requests it, with no care for the status of the surrounding
scope.

Mozilla’s JavaScript 1.7 includes a let declaration that closely resembles block-scoped
local variables in other languages, along with a let statement having essentially the same
function as the above use of the with statement. Neither of these is available in the imple-
mentation we used in this project, nor were they included in ECMAScript 5.

1The catch block of a try ...catch statement also creates a new lexical environment [11, pp96-7], but using
it for this purpose is so pathological that we do not consider it seriously.
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Chapter 5

Evaluation

In this project we set out to assess the JavaScript language and the Lively application envi-
ronment, with particular reference to the claims made about them in the literature. From the
development of our applications we have learnt about many aspects of both systems, as well
as about the Qt toolkit and the interactive programming approach that Lively encourages.

5.1 JavaScript

JavaScript did not present us any major obstacles in using it as a general-purpose language.
Despite being designed as an embedded scripting language the language is not restricted
in any way that prevents its deployment for other purposes, although it has some idiosyn-
cratic traits that make large programs more challenging than they would be in a language
designed with such usage in mind. Some features almost invite the introduction of bugs,
like the default global scope for variables and semicolon insertion. If a var declaration for a
variable is omitted assignments are made in the global scope, leading to subtle bugs when
multiple functions use the same variable or one is recursive. The JavaScript parser implicitly
inserts semicolons at line breaks in some (but not all) circumstances, so statement bound-
aries may not be where the programmer expected. Disciplined use of sensible coding prac-
tices mitigates the harm from these design choices. Although there may be difficulties with
generalising such practices across many programmers, we do not consider that to be more
of a problem for JavaScript than other languages. Projects involving many programmers
will always need to have coding standards in place.

JavaScript’s dynamic nature allowed us to impose new structures and behaviour upon
programs that were not part of the language. We could add AOP-like extensions without
modifying the underlying runtime, for example, which enabled us to express our program
in a more natural way for the task at hand. The ability to make this type of change without
significant alterations to the compiler or runtime system does not exist in many languages,
and is usually found in “scripting” languages. Building some of the tools we constructed in
this project would have been much more difficult without the ability to make these exten-
sions, and the code would have been less maintainable. These “scripting” features can be
useful for general-purpose development.

The language has no built-in module system or way of separating conceptually-distinct
blocks of code. We did not experience this as a major issue in this project because all of
our subprojects were relatively small and the application boundaries sufficed, but larger
projects might encounter more of a problem. Although there is no inherent module system
in the language one could be provided by the runtime system or imposed by code inside the
program. Lively’s application separation from Lively is in essence a partial module system
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imposed by application design.

5.2 Lively

The shared application execution environment that Lively provides gives a unique platform
for building applications. The ability for independent graphical applications to connect to
and interact with each other allows an intriguing and useful structure which opens up new
functionality almost for free to other applications. The Charter application in this project
allows any application with suitable data to expose it through a simple interface and have it
charted in a variety of ways, without any significant implementation cost.

Structuring small special-purpose applications in this fashion also limits the effect of
one of the shortcomings of the JavaScript language, its lack of a module system. Building a
large monolithic application without formal structure is difficult, but application boundaries
are a natural break in structure. We found that our smaller applications were simpler to
keep mental track of than our larger ones, even where they were interacting with other
applications in the system. The Lively literature underplays this advantage but it is the
most significant feature of the system observed in this project.

5.2.1 Implications of connections

Of all our applications the Charter makes the most, and the most varied, use of the ability
to access others, because its role is very suited to obtaining data from other sources. The
text editors similarly have reasonable connections to other applications, but most interest-
ing is the development style the ability encourages. We built several small special-purpose
applications, all able to interact with each other, rather than monolithic multipurpose sys-
tems. We originally planned to build charting functionality into the calculator and use this
experience and relevant code to build the same function into the Introspector, but instead
we could build one more general application able to plot data from all sources.

The program design that this ability enables resembles that espoused by the “UNIX
philosophy” [23, 16]. Applications do one thing and do it well, rather than attempting to
encompass all the related functionality which might be required, and applications work to-
gether. This move away from monolithic applications to smaller single-purpose ones able to
operate independently made the codebase easier to manage, and is an ability that does not
usually exist in other environments.

5.3 Prototype-based programming

We found prototype-based programming as found in JavaScript to be a useful paradigm.
In particular, being able to build up a suitable prototype instance that was fully functional
throughout before assigning it as a prototype to the constructor was helpful when devel-
oping new applications, especially those based on an existing application. We were able to
create multiple prospective prototypes and evaluate them alongside one another, allowing
for very rapid experimentation.

The variant of prototyping that JavaScript uses has some unusual aspects that other
prototype-based languages do not have, which have both advantages and drawbacks. Pro-
totypes must be associated with a constructor function and cannot be assigned arbitrarily,
or to existing objects at all. We would have found it useful to be able to set prototypes on
existing objects and without a constructor, particularly for some of our data objects. Some
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parts of the Introspector implement manual “prototyping” for data objects, retrying lookups
in another object when the result of one is undefined.

While we used many features of the referential prototyping of JavaScript, particularly
during interactive programming, at times we would have appreciated a primitive “clone”
operation making a full copy of an object, as found in concatenative prototyping languages.
Both kinds of prototyping can be useful, and JavaScript (like all other prototype-based lan-
guages we are aware of) includes only the one type. We would also have found it useful to
have more explicit access to object prototypes, so that we could access and change the proto-
type reference of an existing object. The runtime engine in use provided an undocumented
and non-standard __proto__ property referring to the prototype, but this property was not
writeable.

5.4 Qt and QtScript Bindings

The Qt toolkit was very useful, not only for its graphical widgets but for its non-GUI classes
dealing with file access and other features of the underlying system. The widgets were at
least as easy to use as in any other toolkits we had experience with.

The JavaScript bindings were reasonably natural, but largely undocumented. When doc-
umentation for the bindings did exist it often consisted only of a list of members, without
even distinguishing them into properties and methods. Often we were forced to refer to the
(comprehensive) C++ documentation for Qt and attempt to find parallels with the JavaScript
bindings. Finding the correct parallels was often a matter of guessing, as some Qt accessor
methods were transparently translated to properties in JavaScript and some not, and often
only one or two variants of an overloaded method were accessible from JavaScript. Some
of the bindings were automatically generated, and a few of these existed but were unus-
able because other methods they required to be useful were unavailable, particularly those
relating to the underlying graphics contexts.

As Qt and its bindings are multi-threaded and JavaScript is single-threaded we encoun-
tered problems with some of our applications. In large part this arose from a mismatch
between the expectations of Lively, designed for a single-threaded event-driven browser
environment, and Qt. Applications written entirely to one model or the other would be
unproblematic, but the mixture of the two caused difficulties. Some of these could have
been avoided were there synchronisation primitives in the language, or even library-based
locking from Qt.

5.5 Interactive programming

While interactive programming is a claimed strength of the Lively environment, its built-in
support is incomplete. The environment includes an “Evaluator” widget to execute user-
provided JavaScript code, but no tool for modifying the code or state of other objects. The
that pointer was useful from this evaluator for reasonably trivial manipulations, mostly
those affecting the Lively rendering of the application rather than the application itself, but
it was difficult to compose any substantial modifications this way. With only the evaluator
to use we were limited to “toy” changes, rather than real development.

Once we had built the Introspector and associated tools we found interactive program-
ming to be a useful model for development. Directly modifying existing objects and imme-
diately observing the effects in a system that was already running allowed us to make rapid
progress when developing new features, and to verify attempted bug fixes quickly.
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The major drawback of the interactive approach was that we would occasionally lose
work when our interactive changes caused interpreter crashes. Causing destructive crashes
required very particular circumstances, usually editing one of the applications taking part
in the interactive programming process itself, so we were able to avoid them almost entirely
once we realised what the problem was. We were able to avoid the issue because we had
already written the bulk of our tools, and so we could avoid reflexive editing, but work-
ing interactively from the earliest stages would have been difficult. Successful interactive
programming requires a comprehensive suite of preexisting development tools.

32



Chapter 6

Conclusions

JavaScript and Lively present an interesting environment for application development. Each
presents some novel features that are not found elsewhere, and bears out some of the claims
made in its literature.

JavaScript was designed and remains primarily used as an embedded scripting lan-
guage, but is not unsuitable for general-purpose development. No aspect of the language
renders it unusable for purposes other than scripting, although using it in large-scale projects
would require careful attention to coding standards to avoid certain poor language design
choices. Maintaining a large codebase without such standards would be very difficult, par-
ticularly given the lack of a module system, and some behaviours that were sensible in the
original application of the language invite bugs if not avoided.

The language allows very rapid development with its prototype-based inheritance mech-
anism. When developing a new object type a functional instance of the object can be built
up, and then used directly as the prototype for creating further instances. Constructing a
new subtype with shared functionality involves modifying an instance of the existing object
to use as a prototype, with no more complexity than is inherent in achieving the desired
behaviour. The lack of distinction between classes and objects enables development to fo-
cus on the desired behaviour rather than the type structure without requiring subsequent
refactoring. JavaScript’s form of prototyping is imperfect and does not expose all of the
prototype-related behaviour that can be useful for development.

Lively’s interactive application environment allows some novel types of application. Ap-
plications can see and access each other, and discover which application the user is interact-
ing with through the that pointer. First-class method calls on other applications allow new
kinds of inter-application collaboration, and the transfer of the “UNIX philosophy” of many
small special-purpose applications to a GUI environment in ways that are not otherwise
possible.

Lively also aims to enable interactive programming. In interactive programming the
running program is manipulated, modified, and extended at runtime. Lively’s that pointer
provides a reference to the application selected by the user without requiring a named refer-
ence, and allows code to be evaluated within the system to manipulate this or other objects.
The built-in capabilities of Lively for Qt do not provide significant useful support for this
programming model, allowing only “toy” manipulations to be practical. “that” was not as
directly useful as claimed. The system required further extension before practical interactive
programming was possible, but with our introspection application interactive programming
became the primary mode of development in the later stages of the project. The Introspector
built on the facilities of Lively and JavaScript, and required almost all of the novel features
of both. Interactive programming was both useful for development and allowed us to pro-
ceed more rapidly than we had previously, and was a strength of the Lively environment
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once the supporting functionality was complete.
Our project built many applications using JavaScript and Lively in order to test the

claims of the literature about both. The range of applications covered the important fea-
tures and claims about both systems, and allowed us to assess the interactivity at the heart
of Lively. The applications are independently useful, not previously existing in Lively, and
demonstrate different aspects of the two systems. We found JavaScript to be a suitable lan-
guage for general-purpose development with some caveats arising from its historical ap-
plication, while Lively allowed novel interactions between different applications that are
not common elsewhere, and interactive programming was a useful technique within such a
dynamic environment.

Future work

We believe that further investigation of the potential of connecting single-purpose GUI ap-
plications together as we did in Lively here would be useful. While the mechanism we
used is probably not applicable outside a shared environment like Lively the behaviour we
uncovered seemed useful. Similarly, the “that” pointer provided new avenues for function-
ality and is deserving of more research.

The use of JavaScript for top-level desktop development also merits further examination.
This project did not address top-level development, only applications running inside an ex-
isting JavaScript-based window system. This work could include investigating adding syn-
chronisation primitives to the language, or alternative mechanisms of supporting respon-
sive GUI programming. We also believe it would be useful to investigate how large-scale
JavaScript development might work, and whether the limitations of the language make it
unsuitable for large many-programmer projects.
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Appendix A

Application screenshots

Figure A.1: Basic calculator (top left), RPN calculator (top right), and scientific calculator.
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Figure A.2: Charter plotting stack from RPN calculator

Figure A.3: Charter plotting function from scientific calculator
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Figure A.4: Charter plotting live cells from Game of Life

Figure A.5: Introspector examining RPN calculator instance while providing Charter
method call statistics.
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Figure A.6: Versioning editor viewing changes in RPN calculator method
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