Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

BACHELOR’S THESIS

Design and Implementation of

Shared Workspaces
Author: Supervisor:
Conrad CALMEZ Jens LINCKE

29.06.2012

Declaration of Autonomy

With these words, I assure, that this bachelor’s thesis was written autonomously.
No other resources except the specified were used and quotations were labeled

explicitly.

Potsdam, 29.06.2012
Conrad Calmez

Design and Implementation of Shared Workspaces
in a Mobile and Desktop Environment
Shared Workspaces for Lively Kernel

Conrad Calmez

Hasso-Plattner-Institut
Prof.-Dr.-Helmert-Str. 2-3, 14482 Potsdam, Germany

Supervision:
Software Architechture Group
Prof. Dr. Robert Hirschfeld, Jens Lincke

Project Partner:
SAP Research
Dan Ingalls, Marko Réder

conrad.calmez@student .hpi.uni-potsdam.de

Abstract. Synchronous, distributed collaboration systems simplify the pro-
cess of cooperative work for groups of people not being at the same place
together. This thesis describes the design and implementation of a sys-
tem that supports synchronous, collaborative work in Lively Kernel. We
show how we used optimistic as well as pessimistic synchronization ap-
proaches for diffent types of content. The system is implemented as a
shared workspace in addition to a private work area. Further we illus-
trate what benefits synchronous work has over a asynchronous way of
working together.

Keywords: Javascript, Lively Kernel, collaboration, CSCW, shared workspaces

Table of Contents

Design and Implementation of Shared Workspaces

Design and Implementation of Shared Workspaces in a Mobile and

Desktop Environment o oo
Conrad Calmez
1 Introduction............ ..o
2 Approach /Problems........ i
2.1 Client-Server Architecture i,
2.2 Data Exchange Format
2.3 Synchronization o
3 Implementation i
3.1 Synchronizationof Morphs........... oLl
3.2 Synchronization of Drawings
3.3 AwarenessFeatures................... il
4 Examplesand Scenarios.............. oL
4.1 Exchange of Content Between Worlds
42 Developing Ideas Together,
4.3 Communication Within the System............................
5 Performance Evaluation........... i
6 Related Work.
6.1 WYSIWIS ...
6.2 CogNoter.coiiuiiiii i
63 GROVE
6.4 Portholes........
6.5 ShrEdit
6.6 TeamWorkStation............o
6.7 Single Display Groupware.........................oii...
7 FutureWork
7.1 Software Quality.......... i
72 ClientFeatures i
7.3 Server Improvements
8 Conclusion......... ..o

ReferenCeS . ..ottt e

v

1 Introduction

Wiki systems offer an easy and accessible way for people to work together.
Usually users can create and save pages that can afterwards be edited by other
users of the wiki system. With such systems, work can be distributed over long
distances. Lively Kernel [6] offers such functionality via two system built-in
mechanisms.

First, the system is split into worlds which are part of the Morphic Frame-
work [17] implementation that is a core component of the system. Those worlds
form a so called Webwerkstatt [7] which collects the knowledge produced by
the system’s users just as other wiki systems do with pages.

Second, the PartsBin [8], as a way to publish written programs to the system,
offers an identical benefit on the level of applications.

Working in wikis surely enables users to work together, but the style of col-
laboration is rather asynchronous since only one user can save the document at
the same time. For the ability to work together at the same time!, there need to
be additional mechanisms.

As changes in a wiki can not be seen until someone saves them, duplica-
tion of work can happen if the work to be done is not pre-coordinated. But
such coordination creates overhead on the process of working and disrupts the
workflow of synchronous collaboration. However, the synchronization of con-
tent is an important task that has to be done in near real time to create a notion
of synchronous work. Consequently, a system for synchronous work should
either be on one location?, so that synchronization does not have to happen, or
it has to synchronize the content in a way that creates the least overhead on the
actual process.

As Lively Kernel does not offer such functionality, we approached to imple-
ment such a system. This bachelor thesis describes how we augmented Lively
Kernel’s collaboration facilities by creating a new application that enables its
users to collaborate at the same time no matter of what place they are. We com-
pared our system with other collaboration systems in the collaboration matrix
in figure 13. Since synchronous collaboration is missing in Lively Kernel, most
of the focus lays on even this style of collaboration. In general, the intention
of our application is to support collaboration for people working on a common
goal. That is why the users should not have to take care of the asynchronous
collaboration style as well. Therefore, our system has asynchronous aspects as
well.

When users come together to work on a common goal, that is called a session.
Those sessions can be started if one user opens a new shared workspace within

! synchronous collaboration

2 meant is actually one machine / computer

3 The graphic is based upon the authors personal estimation and is not backed with
measured numbers. It only serves for an approximated comparison of systems.

most distant

SyncMorph

Location K/ / PartsBin
BlackboD
same

>
synchronous asynchronous

Time

Fig.1. Collaboration Matrix; The SyncMorph is the system of interest in this thesis. The
PartsBin is part of Lively Kernel.

the system. In order not to have to wait for all participants to join a session,
the system needs to support asynchronous collaboration styles. Users joining
later need the content that has been produced at the time they joined, as well as
the updates that happens after joining. As a consequence, our system does not
only support synchronous, but also asynchronous collaboration styles.

Collaboration systems are very diverse in terms of how they use computers
to support the work of a team. One natural approach is to physically share
one space. This has the side effect that work can not be distributed over a
distance. Since Lively Kernel is a web application that inherently has users
all over the world, it should be possible to distribute work all over the world
as well. Hence, an important key assumption of our system is that each user
is working on his or her own machine. Conclusively, our system embraces
distributed as well as co-located work.

As our system is based on the usage of individual computers it needs a syn-
chronization mechanism. To synchronize the content, one needs to identify the
content’s benefit.

As the Morphic Framework is a core functionality in Lively Kernel it is un-
derstood that one wants to distribute morphs via our system that we called
SyncMorph. To make the workflow easy, we decided to use interaction that
a user of Lively Kernel is used to. In addition, our system is implemented as
a morph. This suggests to use morph interaction. Thus, the users can drop a
morph onto the SyncMorph and it will take care of the distribution to all other
connected clients. Furthermore, if one user removes a morph from the shared

workspace the corresponding morph representations on all other clients get re-
moved.

Sharing content is a way to distribute knowledge, but if we want to enable
users to work together, they need to be able to alter the shared contents. Conse-
quently a more enhanced version of this SyncMorph also supports the editing
of morphs on the shared space. In the interest of making changes to the syn-
chronization state immediate and foreseeable it is also possible to see a morph
as another user drags it onto the workspace of the SyncMorph.

Working with Morphic enables users create Ul and behavior of their applica-
tion. Nevertheless, sometimes an idea is not as concrete as it could be directly
implemented. Therefore we decided to add drawing support to our collabora-
tion system. The ability to draw enables users to sketch ideas. The drawings get
synchronized as well so that ideas can be developed together. In order to create
some freedom for the user while drawing, the system allows the customization*
of pencils.

Having such a system, which synchronizes all contents to all clients, empow-
ers the users to have a common sense of how far the progress of work is. How-
ever synchronization is not enough to create an awareness of what each collab-
orator is currently working on. In addition to the synchronization of contents,
further mechanisms are needed for a system that should support synchronous
collaboration. Collaboration on a physically shared workspace does not have
those problems. Looking at why collaborators are aware of each other’s work
using such systems, can lead to a solution for a distributed system.

In a physically shared workspace like a large table, each team member is
aware of the area in which the others are working by seeing them work there.
The current working area in the digital sphere is where a user has its mouse
pointer or finger’. By synchronizing the position of the mouse pointer or re-
spectively the finger, an equivalent is found for distributed systems. Assigning
each user a unique color, that is different enough from the others, enables the
users to identify each of their collaborators.

Besides, communication on a table is uncomplicated as one just says some-
thing out loud to pass the message to everyone. This kind of instant commu-
nication can be achieved via a group chat functionality that we implemented
as well. Further our intstant messaging chat has the benefit that the message is
only passed to everyone at the same table, but not in the same room.

The following chapter will describe our approach and the problems to solve.
The succeeding chapter will explain the implementation of the system. The
fourth chapter will evaluate the results by looking at some usage scenarios.
Afterwards, the system will be evaluated performance wise. The sixth chapter
will present related work. After that, we will give an outlook on how the system
could develop. The last chapter will summarize the findings of this work.

4 color, alpha, size, stroke style
% on a touch device

2 Approach / Problems

When people work together, they naturally gather at one place. Consequently,
meetings in the virtual world need to evoke the same advantages. Especially
this has to be done in order to escape the need of manual synchronization by the
users. The term of the shared workspace in this thesis is meant as an analogy
to the physically shared workspace as it is the model for the system that we
built. An example of the user interface in action can be seen in figure 2. This
chapter describes the problems that occurred while implementing our system.
Additionally, it explains our approaches to solve the shown problems.

20 _ 9 0

aaaaaaaaaa

SMILEY

Fig.2. User interface of the SyncMorph with (1) buttons to toggle and indicate con-
nection state, chat pane and pencilstyler (2) synchronization pane, (3) chat pane and (4)
pencil styler

In pursuance to make a system that supports distributed, synchronous collab-
oration work well it should be responsive. For responsiveness, it is crutial to
synchronize the state or the content in a relatively small time interval.

A high-level overview of our applications functionality is shown in figure 3.
It is based on message exchange to communicate modifications of the content.
The figure shows an example of how content can be produced synchronously
on two independent worlds.

2.1 Client-Server Architecture

We decided to implement the application with a client-server architecture. The
decision was made for the following reasons:

First of all, the server as a central unit knows all clients. Having such an
actor makes it easier to implement the distribution of messages. Althought,
this does not say that a distributed networking system might not be equally
well. Our solution was just the most suggesting one with the used technology.

Client 1

Synchronization Server

1. Mouse Enters

\ 4

4. Line Drawn

2. Indicator Added

Client 2

!

time

A

5. Mouse Move + Morph.

IR

8. Color chaged

3. Mouse Down + Move
<

6. Morph Added

7. Change Color

<

<%

Fig. 3. High-level overview of functionality

i ndBEdk

Moreover, as the server receives all messages from all clients it is possible
to store the input data into a persistent storage. At the moment, the persistence
is realized by clients holding a certain state. This concept of persisting state in
clients would of course work with a distributed system, but in this case one
loses the central server as an additional archiving unit.

Beides, implementing a distributed system without central infrastructure
might be convoluted in Javascript.

The client-server architecture also enables the implementation of alterna-
tive clients that communicate over the same server. Since the server’s purpose
is only the message distribution, and possibly persistence, there is no need to
replace it with an alternative implementation. Alternative clients could for ex-
ample implement a different drawing algorithm for the purpose of interoper-
ability. Here again a set of polymorphic clients without a central server unit is
possible as well.

Furthermore, the server can act as a centeralized mixer [5] for messages [9].
This can save bandwidth to increase the performance when using slower con-
nections.

2.2 Data Exchange Format

We decided to define a specific exchange format for message exchange. With
this format it should be possible for the user® to decide who will get the message
that is going to be sent. In favor of applying” messages in the correct order it is
also possible to augment the format in that way so that each message contains
an ID and a timestamp.

The message packages itself are serialized JSON objects. The message for-
mat looks like the following in code example 1.1.

{
message: "message content (does not have to be a string)",
me: p
broadcast: ,

Code Example 1.1. simple version of the exchange messages

The message content can be string or a data object itself. The properties me
and broadcast specify to whom the server should send the messages. Whereas
me set to true means that the message will return to its original sender. More-
over broadcast means that the message will be sent to every user being con-
nected to the same channel as the original sender of the message but the original
sender itself. These options can be extended by a new property broadcastType
which will determine on which level the broadcast will happen. This option
should default to "channel” with which it will behave as described above. Set-
ting the option to "global" would mean that the message should be sent to every

% in this case a client application
7 or resending

client connected to the server except the client who initially sent the message.
An extended version of this exchange format can be seen in the following ex-
ample.

{
message: "message content (does not have to be a string)",
id: "unigque message id",
time: 1234567890,
me: ,
broadcastType: "global",
broadcast: ,
}
Code Example 1.2. extended version of the exchange messages; properties id, time and
boadcastType are added

2.3 Synchronization

As our system should support distributed, collaborative work, a synchroniza-
tion mechanism is needed. This section examines the synchronization process.
Figure 4 shows an overview of the event — method mapping for the different
kinds of synchronization that are used within the application.

Scope of Synchronization Since work in Lively Kernel happens on so called
worlds, it is suggesting to synchronize whole worlds. The disadvantage of this
approach is that this would prevent the presence of private workspaces. Private
workspaces are important for various reasons. Users might feel a disturbance
of their private sphere if all their thoughts and work are synchronized immedi-
ately to all other team members [12]. Consequently, a good system has to offer
the possibility to decide which content should be synchronized. That is why
we decided to implement our system as an application that can be loaded into
every world to augment it with the collaboration facilities our system is offer-
ing. All data and objects outside of the application then belong to the private
workspace of the user. By dragging objects into the application they and all ac-
tions on them get synchronized. Therefore, we build a clear boundary between
private and shared workspaces. Further, all work within the world remains the
same just as the users are used to.

However the development of a clear synchronization boundary makes the
application logic, and by that the implementation, more complex. Since our
system is just another application within Lively Kernel it is part of a world as
well, just like every other morph. The contents of the SyncMorph are created in
one world. They can have references to other objects in the same world. If a user
now decides to synchronize such an object having references to other objects
in his or her own world the problem will arise that this reference is actually
missing in all other worlds where the object was added by the synchronization
algorithm. Naively, it is possible to implement a reference tracer in order to
synchronize the references as well. The problem is that the world is a morph

Mouse Enter Mouse Move Mouse Down Mouse Up Mouse Leave Ticking

Morph under cursor? Morph in Hand? Morph in Hand?

Morph in Hand?

yes no

yes

\4 \4
"MorphGrabbed" \ \ "Draw" \ \ "MorphDropped" \\ "Morph" \\ "Change" \

Fig. 4. event — synchronization method mapping

as well which can be referenced®. As a result, only one reference to the world
would cancel out the concept of this synchronization boundary, because the
world would have to be synchronized as well.

Synchronizing the world brings further problems. Since there is a world on
every client, and there should only be one world, the algorithm would have to
merge as many worlds as there are participants in one session. Moreover, the
SyncMorph is part of the world as well ergo it would have to be synchronized
as well. This would lead to an infinite recursion.

In conclusion, we decided not to synchronize references that point to objects
which are not in the space of the shared workspace. The topic of references is
part of the future work.

Synchronization of Generic Content For the synchronization of generic ob-
jects we needed a serialization algorithm. The first possibility is to implement
an algorithm that uses a whitelist to create a serialized object with certain prop-
erties (e.g. the visual properties). On all other clients, an object of the same
class would be created. The new properties would be applied to this object.
Even if this approach needs less network bandwidth, the focus is placed on
certain properties which makes the application harder to extend. To support
additional properties, the serialization algorithm must be reworked.

Instead, the approach we took for serialization uses Lively Kernel’s seri-
alization algorithm to store worlds and morphs. The advantage is that the
whole object is serialized, no matter what it looks like. This approach uses
more bandwidth since more information are communicated. Initially an object
gets serialized via this algorithm. Afterwards only changes [15] on the object
get synchronized in order to save network bandwidth.

Generic objects and all changes on them are synchronized in an optimistic
way which means that they are first executed on the client and then commu-
nicated. This has the benefit that the responsiveness of the system does not
change by a considerable amount.

Synchronization of Specific Content For specific content with a limited benefit
for the user we took a different approach. Drawings are an example for such
content with limited benefit. Communicating whole objects would use more
network performance than needed in this case. Restricting the sent information
is acceptable, since the possiblities to extend the drawing of lines are endless’.
We consider the benefit of saving bandwith here to be higher than the need
of extensibility. The clients receiving such specific information recognize what
has to be done by the kind of event that delivered them. By that our client
application is a thick client [5]. With this, it is possible to create a responsive
drawing surface.

Specific content is again optimistically synchronized to keep the correspon-
ing interactions responsive.

8 like any other morph
’ We augmented the sent information by line style, width and color

10

Creation of Awareness Working together with a software that synchronizes its
contents can sometimes be surprising as a remote user makes an action whose
result is displayed on the user’s client. To reduce the effect of being surprised,
the user actually has to see the action happening on the remote client. Besides,
the user should be able to anticipate what action a collaborator will do. This
concept is called awareness. If a user is not surprised by what happens on the
synchronized board he or she will be able to plan his or her own work in a
better way. Good planning of work by each user also leads to less editing con-
flicts as well as less duplicate work. Consequently, awareness is an important
concept in collaboration systems [2,3]. We implemented two concepts to create
awareness.

Telepointers Looking at how users anticipate what and where a co-worker is do-
ing something when working at a physically shared work space!’, we found a
solution for the anticipation problem. When a user sees another one approach-
ing a certain object on the work space he or she will think that it is likely that
his or her co-worker is going to interact with it'!. Furthermore in a physically
shared workspace users are able to point on objects to talk about them.

Both action are performed with the hands of the user. Consequently, it
is suggesting to synchronize the representation of the hand in a distributed
workspace. By doing so, a user gets a telepointer for each collaborator.

For the sake of being able to distinguish different users, each telepointer has
a unique color that is different enough from all colors of the other collaborators.
Since we have a synchronization server as a central communication unit that
knows all clients we implemented the user — color mapping there. When a new
user logs into a shared workspace the server will assign a new color to this user.

Telepointers are, like drawings, specific content that is optimistically syn-
chronized with a reduced set of information since the mouse and touch inter-
action needs to be highly responsive with respect to a usable system.

Chat With the given system, it is straight forward to design a chat application.
We use our data exchange format to send textual messages between users. To
enable the user to see if the message was really sent, the messages are pes-
simisticly synchronized. This means that a message is first sent to the server
which distributes it to all clients. Each client executes the action corresponding
to the type of message.!? So if the connection is broken, the user will recognize
it by seeing that his or her chat message does not show up in his or her chat
client. The server itself stores chat messages not only by saving the user name
- message mapping. It extends the information by the time the message was
received by the server. With that, a chat log is created on the server that can be
replayed to clients that have been offline.

1% such as a table or a whiteboard

! e.g. draw on the area; manipulate the object; move the object

12 In case of a chat message this would be to display the message and the username in
the chat GUIL

11
3 Implementation

In this chapter, the implementation of the system is illustrated. The imple-
mentation is described feature by feature. For each feature we discuss the ben-
efits it conducts and the limitations that remain. The features can be divided
in three main categories of features: synchronization of morphs, synchroniza-
tion of drawings and awareness features. Each feature set is part of the same
software system.

3.1 Synchronization of Morphs

As morphs are the objects with which the users implement their applications,
it is important to use the synchronization approach of generic content in order
not to restrict the possibilities Lively Kernel is offering.

Fast Sharing At the time we implemented the first version of the SyncMorph,
we routinely used CouchDB [1] for storing data that we created in Lively Ker-
nel. Consequently, we used CouchDB here as well to store serialized morphs.
The serialization was already implemented and we just had to use it. It basi-
cally linearizes the object tree and writes it into a JSON string.

On top of serialization, we needed some interaction event on that we would
start the synchronization process. Here again we were looking for something
that Lively Kernel was already offering. Since our application was implemented
as a morph, we wanted it to be as simple as adding another morph to it. Af-
ter a morph is added our application should take care of its distribution. The
onDropOn method seemed to be a good place to hook into since it is called on
the target morph when a user drops a morph onto it. We patched the behav-
ior to the class Morph with a layer. Code example 1.3 shows this. If a morph
is dropped onto the SyncMorph, the method saveMorph will be called on the
SyncMorph. For convenience, we wrapped the usage of the built-in serializer
in a serialize method on the class Morph.

The functionality of saving a dropped morph to the database is of course
implemented on the SyncMorph. Apart from saving the morph to the database,
metadata will be added to the morph object in order to be able to manage'® the
content as updates come in.

After this iteration, we were able to distribute morphs fast between worlds
without using the PartsBin or a saved page. Though the conflict avoidance
strategy was to disallow interaction except grabbing for the morphs on the
SyncMorph. So for being able to edit the morph, the user had to grab it and
drop it into his or her own world to enable the editing features again. As a con-
sequence synchronous collaboration was not possible with this revision, but we
fastened up the sharing process.

3 e.g. delete the morph if it was deleted on another client

12

module ('projects.BP2012.SyncMorph') .requires () .toRun (() {
cop.create ('SyncMorph') .refineClass (lively.morphic.Morph, {
onDropOn: (aMorph) {

(aMorph.saveMorph) {
this.disableHalos () ;
aMorph.saveMorph (this) ;

} {
this.enableHalos () ;
}
}V
serialize: 0 A
// ... implementation intentionally left out
serializedObject;
}V
1)
SyncMorph.beGlobal () ;

b
Code Example 1.3. extension of class Morph

Message Passing Since the CouchDB server was quite slow if the SyncMorph
contained many morphs, we were looking for a faster alternative. We decided
to do the message passing ourselves and implement a synchronization server.
We used node.js [16] for that. Fortunately, Lively Kernel is offering a mecha-
nism to create and run node js servers. This made it easy to develop this appli-
cation completely within Lively Kernel.

The implementation of the synchronization server was straightforward since
node js and socket.io [10] offer all features we need for a message passing server.
First we need to hold a reference to all clients that are connected to the server.
Since node.js abstracts different technologies to sockets, it was easy to accept
incoming connections and close them again as the client disconnects.

The channel feature of socket.io was a way to implement different workspaces
within one system. Also, it was easy to send a message to all clients of a certain
channel, as the library offers a broadcast mechanism that sends a message to
all clients'* of a channel or the whole system. Further, we needed to define dif-
ferent message types for different actions that should be synchronized. Figure
1.5 shows an exerpt of the implementation of the synchronization server. We
wrapped storage and message broadcasting functionality in an object called
WhiteboardServer. The set of events that we need for the communication be-
tween clients was defined with the io object of socket.io. Lines 16 — 18 show an
example of such an event definition. The first parameter of the socket.on call is
the name of the event. Additionally, the second parameter is the functionality
description of the event as a Javascript function.

14 except the sender

13

saveMorph (aMorph) {
aMorph.databaseID = undefined;
aMorph.databaseRev = undefined;
(this.active) {
newMorph = aMorph.serialize();
result = this.getDB() .save (newMorph) ;
(result.error=="conflict") {
alert ("an error occured while synching the morph");
} {
aMorph.databaseID = result.id;
aMorph.databaseRev = result.rev;

}
this.updateDBObjectIDs () ;

}

Code Example 1.4. save functionality of SyncMorph

The version of our application after this iteration improved the performance
of the application when it contains many morphs. Still, the synchronous collab-
oration features were not present at this time.

Enabling Collaboration Finally we decided to integrate a diffing and merging
algorithm for objects [15] in order to be able to only communicate changes in-
stead of whole morphs. Unfortunately an event for a change that happened on
an object is missing in Javascript. That is why we used a ticking script that ob-
serves the changes on all morphs!® that are synchronized via the SyncMorph.
This ticking script is executed in a well defined time interval. It performs a diff
to the current version of a morph. To have a reference to compare to, we copy
the morph after diffing as a current version.

When a change is detected, it is sent to the synchronization server that dis-
tributes that message to all other connected clients. A client receiving a change
merges that change into the regarding morph.

After this iteration the SyncMorph is finally capable to support synchronous
work. The users will get updates of the morph shortly after they are done on
the client of a collaborator.

3.2 Synchronization of Drawings
Drawings are an example for content that has a well defined set of features
and which therefore can be synchronized as specific content in order to save

network bandwith and by that improve the responsiveness of the system.

15 Morphs are usual Javascript objects as well.

14

WhiteboardServer = {
port: 4000,
/S
send: (socket, channel, messageType, data) {

(data.broadcast) {
socket.broadcast.to(channel) .emit (messageType, data);

(data.me) {
socket.emit (messageType, data);
}
o
}

io.sockets.on('connection', (socket) {
// ... code intentionally left out
socket.on('ping', (data) {

WhiteboardServer.send (socket, /xchannelx/, 'pong', data);

1)
// ... code intentionally left out

b)i
Code Example 1.5. code exerpt from synchornization server implementation

Drawing on Canvases The drawing facility needs to have a surface on which
the users can draw. We used the HTML5 canvas element for that purpose. The
canvas element offers an API to draw on it. Since Lively Kernel did not include
a canvas morph at the time we implemented this, we needed to create such a
morph. Fortunately, Lively Kernel is offering a flexible mechanism to create
morphs. The only task we had was to create a canvas element that we used as
the shape for the morph.

For the ablity to send events to the synchronization server, we encapsulated
the API calls in own methods on the new morph that we called Whiteboard.
Conveniently, the API functionality of the canvas element matches our drawing
metaphor as it has a function lineTo that acts as you would have a pencil. You
can call it several times giving it a point on the canvas in order to draw a line.
The last drawn point is the point where the next stroke would start as if there
would be a virtual pencil. Aside from that function moveTo that sets the position
of the virtual pencil to a given point on the canvas.

In addition, we defined which interaction event!® calls which API call.

First a client application sent out whole lines. This had the consequence that
lines popped up at remote clients. When drawing larger shapes this actually
spoiled the process of drawing together as the collaborators can not anticipate
where another user is drawing. To solve that, we implemented that each stroke
on one line was synchronized. Consequently, if a client receives a message from

16 mouse down, mouse move, mouse up and touch start, touch move, touch end

15

the synchronization server, it will call the assotiated method on itself to draw
the stroke.

With this implementation the users are able to make drawings together. Un-
fortunately, the canvas does not seem to be fast enough when synchronizing
single strokes of a line. More importantly, this implementation does not work
on the iPad. That is why we decided to use a different technology for the draw-
ing surface.

Drawing Lines Lively Kernel supports SVG rendering!” which was the reason
why we decided to use SVG paths for the drawings.

As SVG does not have a convenient API for drawings such as HTML5’s
canvas element, we implemented a workaround in order to map the code to
the drawing metaphor. When an event arrives, that starts the drawing of a
new line'8, a new SVG line morph is created. With each arriving event! that
indicates the continuation of the drawing, the current position of the mouse or
finger, which is stored in the regarding event, is added to the vertices of the
SVG line.

Additionally, we abstracted the call of drawing functions and the regarding
events that should trigger them. For example, we mapped the mouse move
event to a method that handles the process of drawing a new stroke. When we
added touch interaction we only had to map the touch move event to the same
method.

Actually drawing at the same time on different clients requires that each
message contains a point®® and an identifier for a line. By providing these infor-
mation, the client application is capable of drawing multiple lines at the same
time.

This version of the Whiteboard offers a way to draw together on a morph
with a better performance than the previous iteration.

Additional Features To better support the expressiveness of the drawings, we
implemented a virtual pencil that could be styled in different ways. We imple-
mented the customization of line thickness, color and line style. With that users
have a versatile tool at hand for different drawing tasks.

To implement this additional feature, we only had to set the width and color
as well as the style of the border of the SVG path. Moreover, we built a GUI tool
to set all those parameters in a convenient way. This GUI can be seen in figure
2 on the right.

Finally after this iteration we have a software that supports the collaborative
drawing on desktop and touch devices. Likewise, simultaneous drawing on
different clients and with a customizable pencil style is possible.

17 SVG rendering was actually the default rendering mechanism before HTML render-
ing was implemented

mouse down + mouse move or touch start

mouse move or touch move

20 that should be added to the vertices array of the SVG line

18
19

16

3.3 Awareness Features

Telepointers Javascript does contain events for mouse interaction and Lively
Kernel does contain events for touch interaction as well, which is an enhance-
ment we made that is described elsewhere [11]. Looking at the move events
for each interaction method one gets the current position of the representation
of the hand in the system. Since telepointers are specific content, they are syn-
chronized optimistically with a limited set of information. The mouse event
that is distributed by the server to its connected clients contains the position
and identification information for the telepointer. An example of how a mouse
message event looks like can be seen in code example 1.6.

message: |
indicator: 120938479283,
position: {x: 42, y: 23}
bo
me: ,
broadcast: ,

Code Example 1.6. an example of a mouse message event

The remote clients create and display a telepointer for each other client.
With the identifier that is provided in the mouse message, the corresponding
indicator can be found. With each arriving event the remote clients update the
position of the corresponding indicator.

Chat The implementation of a chat system was straightforward, since there is
already synchronization server that can distribute messages, and that is already
able to communicate complex information. On the server side a new message
type had to be added that does nothing but simple routing of messages to the
clients.

On the client side, the sending and displaying of messages had to be im-
plemented. For that, we build a separate GUI pane that users can trigger from
the main view.2! The chat pane consists of two elements for its two tasks: First,
an input field where users can type in text and send it by pressing the return
key. To have this behavior implemented, we watched on each key stroke?* if
the return key was pressed. Second, a pane to display incoming messages. This
message log was realized by taking the data that is coming in and concatenating
the message’s content to the current content of the text pane.

2l This can be seen in figure 2
2 onKeyDown

17

In order to support shortcut commands for power users, we added com-
mands that can be entered in the same input field. Every command begins
with a slash that is followed by the name of the command. The commands are
stored in an object that has the command name as a key and the description of
the functionality of the command as a value. The key is a string and the func-
tionality description is a Javascript function. An exerpt of the definition of this
object can be seen in code example 1.7.

this.commands = {

'nick': (name) {
this.whiteboard.setUserName (name) ;
this.showMessage ("changed nick to " + name);

}I

'names': 0 A
this.whiteboard.getConnectedUserNames () ;

b
'channel': (channel) {
this.whiteboard.setChannel (channel) ;

}I

'chan': this.commands|['channel'],
'clear': 0 A

this.whiteboard.clear () ;
}I
/ *
. more commands intentionally left out
*/
}i
Code Example 1.7. exerpt of the command object

Having this object available, the functionality gets called by accessing the
commands object with the command string the user had just entered as a key
and calling the apply method on the function that was returned. The function
will be applied to the chat pane so that the description of a command must be
written with that in mind. All parameters given by the user will be routed to
the function that is called on the chat pane.

Furthermore, the convenience feature of having a history of the entered text
was implemented by again watching the pressed keys. If the up or down keys
were pressed, the user will be able to cycle through an array of the entered
messages. Those messages were saved by pressing enter®.

» The same mechanism as sending messages

18
4 Examples and Scenarios

This chapter points out some scenarios of usage that will be discussed on the
basis of the current version of the collaboration system we implemented.

4.1 Exchange of Content Between Worlds

Let us assume the following collaborative scenario: Two users working in Lively
Kernel on two different worlds want to exchange ideas in form of an application
written within the system. Having the PartsBin, the creator of the application
can publish it. The other user can from now on load it using the PartsBin.

This process invokes several problems when working together closely. First,
the overhead of publishing the application and writing a commit message might
be too high to justify the benefit of sharing the work. Second, the user that shall
have a look at the work of his or her coworker might not want to invest the
time to search the application in the PartsBin in order to load it. Besides, the
progress made on the implementation might not be in a state where one wants
to publish it to a broad audience?.

Consequently, a fast exchange of applications®® should have the least over-
head to share the application with others.

The SyncMorph implements this workflow by letting the user simply drop
the morph into the synchronization pane. The system will take care of the syn-
chronization. As an effect, the morph appears in the coworker’s application
without the need that this person does anything except being connected to the
server.

4.2 Developing Ideas Together

Working with a system that follows the metaphor of a wiki, a user will create
content on its own and save the content page in the interest of making it avail-
able to other users of the wiki system. The collaborators can open the saved
page to see what the user created and add their own ideas to it.

This kind of conflict handling is called "Single Active Participant" [4]. This
process is relatively slow since every participant has to wait until someone
saves the page to add own content to it. If the style of work is highly asyn-
chronous, this will not be a problem. But as the system should support syn-
chronous work, this approach does not fit the requirements of simulaneous
editing. Figure 5 shows the difference of asynchronous and synchronous styles
of working together.

Consequently, conflict handling in our application is not done in such a
blocking manner. Our approach is aiming at group dynamics to solve editing
conflicts by giving each user the information he or she needs to know where

 This is what the PartsBin actually does.
5 generally Morphs which are Javascript objects

19

asynchronous workflow

Peter

Mary

find idea find idea
new version | . ___ produce wait for collaborators
of content content to save the page
review work of
collaborators
review work of produce ...> new versior|
collaborators content of content
-/
synchronous workflow
Peter Mary
find idea find idea
new version) | . . produce review work of . "
of content content collaborators review work of produce ...y new versior|
collaborators content of content

Fig.5. Examplary comparison of (1) asynchronous and (2) synchronous collaboration

style

20

and what his or her coworkers are doing. Furthermore, communication is im-
portant to create group dynamics. That is why we implemented an instant chat
that is located next to the synchronization pane. Besides, the actual editing hap-
pens in a fully synchronized way. If a person makes an update this change will
be sent to every other client that is connected. With such a level of synchroniza-
tion, we create the feeling that the group is working on the same content.

4.3 Communication Within the System

Communication in wiki systems is often done via comments that are just an-
other variation of content of a wiki page. Consequently, this comes along the
same problems as other content?® when working synchronously.

In favor of a synchronous working style, the system should distribute those
messages instantly. As mentioned in the previous section, the SyncMorph im-
plements this instant messaging with a chat interface that distributes messages
to all users of a channel.

% see previous sections

21

5 Performance Evaluation

This chapter deals with the evaluation of the performance of the system. Since
synchronization of contents is time critical for synchonous collaboration, the
focus lies on how fast messages are exchanged between clients using differnt
networking technologies. The experiments were all done using the same lap-
top computer. This machine was connected over WiFi to an access point that
was connected to the internet using one of the following technologies: local net-
work?, DSL, UMTS-Broadband, GSM. Further, the experiments were realized
using two clients connected to the server. Both clients ran on the same machine
and used the same networking technology.

100000 T T T T T
I local network s
ds| me——
umts broadband —
gsm —
10000 .
1000 | .
1%}
€
£
()
£
100 u
10 - B
1

Fig. 6. Roundtrip time of a simple ping message through the synchronization server

For the sake of being able to interpret the results better, we first measured
how long it takes for a simple message to get from one client to the other and
back. For this roundtrip, we sent a ping message through the synchronization
server to the other client. The other client then responded with a pong message.
As the pong arrived at the original sender the time measurement was over.
Figure 6 shows the results of the measurement.

% refers to the same network the application server is in

22

The different technologies performed as expected. The roundtrip time in
the local network was 5.4 ms in average. Consequently, a message arrived at
the other client after approximately 2.7 ms. The other technologies performed
worse as expected. For the DSL internet connection, the roundtrip time was
172.4 ms in average which means that a message was received by the other
client after approximately 86.2 ms. UMTS-Broadband®® was not that much
slower than DSL with 232.7 ms in average for a roundtrip meaning that after
approximately 116.35 ms the other client received the message. Using GSM as
an internet connection slowed the roundtrips of messages down to 4346.5 ms
in average. Consequently, a message arrives at the other client after more than
2 seconds.

100000 — T T T T
s local network — m—
ds| m—
umts broadband =
gsm —
10000 =
(2}
€
£ 1000 F B
[0} - p
£ L
100 | g

Fig.7. Roundtrip time of a message with a whole morph as content

For messages with a considerable amount of content the throughput of the
network connection is important. Using the system ourselves we figured that
a synchronization time around 500 ms seems to be enough not to break the
synchronous workflow.

% also known as 3G or HSDPA = High Speed Data Packet Access

23

Adding content to the messages has an effect on the timings of the messages.
The roundtrips in average were: 90.3 ms for the local network, which results
in a time of 45.15 ms that the other user needs to wait for message arrival;
466.7 ms for the DSL connection, so that messages arrive at their destination
after approximately 233.35 ms; 564.6 ms for the UMTS-Broadband connection,
so that messages arrive after approximately 282.3 ms; 7569.3 ms for the GSM
connection, meaning that messages reach their goal after approximately 3784.65
ms.

Conclusively, the throughput on connections using the local network, DSL
or UMTS-Broadband is good enough to use the system. Whereas, connections
using GSM are definitly too slim to use them for synchronous collaboration.

100000 T T T T T
I local network
S| . 4
umts broadband m—
gsm m—
10000 | .
1000 5
" [
€
£
(o)
£
100 | .
10 B
1

Fig. 8. Roundtrip time of a mouse message

There are also messages that show a continuous action like the mouse moves
on a client that are represented by telepointers on the other clients. For those
messages, the throughput of the network connection is not important but speed
of the network? Those message are not as large as a message with a morph as
content since they basically only contain a point that says where the mouse

2 How fast messages arrive at the destination.

24

pointer moved. But since the action that is shown is continuous and the users
expect it to be continuous, the time it takes to synchronize should be low.

On the local network it takes 4.3 ms rountrip time in average. So that the
message arrives approximately after 2.15 ms at the other client. This is as much
time as it needs to send a ping message. On the DSL connection it takes 128.3 ms
for one roundtrip in average. So that a mouse message will arrive after approxi-
mately 64.15 ms on the other clients. The UMTS-Broadband connection reaches
389.2 ms in average for a roundtrip. So that the message will approximately ar-
rive 194.6 ms after sending it. On the GSM connection a roundtrip takes 12267.2
ms which means that the message will arrive 6133.6 ms after sending it at the
destination. Again, as we used the system ourselves, we figure that a time
around 200 ms is enough to create a reasonable smooth continuous action on
remote clients.

Conclusively, connections using the local network, DSL or UMTS-Broadband
are fast enough to use them with our system. But connections using GSM are
definitly too slow.

Another question is if the system is usable and responsive enough to collabo-
rate with people from all around the world. As an example we assume a work
group that is in Potsdam®® and Palo Alto. The distance between the two cities
is about 9154 km3!. The fastest connection between the two cities would be a
roundtrip time around 2x9154 km/speed of light = 2x9154 km/299.792 km/ms ~
60ms. The people working in Potsdam should not have a problem as they
might use the local network. But the question is if the system is usable and by
that fast enough for the people in Palo Alto.

The actual roundtrip time would not be as low as 60 ms since the infor-
mation has to travel with the speed of light. Additionally, we can not assume
the same network performance as in the local network. Consequently, we will
assume that the network connection performs as well as a DSL connection.
Adding the additional latency to the values of the DSL connection results in
times of 116.2 ms®? for a small message and 263.35 ms® for a larger message to
arrive. Since this estimation is based on the speed of light and the direct con-
nection between the two cities it is very optimistic. The latency in reality might
be higher. Conclusively, the user experience might not be good enough that far
away from the server.

% Where the server of lively-kernel.org is located.

3! Queried at http:/ /www.wolframalpha.com/input/?i=distance+from+potsdam+to+palo-+alto
2172.4ms + 60 ms/2

% 466.7ms + 60ms/2

25

6 Related Work

In this chapter we shortly point out some related work that has been done
by other research groups. The work discussed here was done in the 1980s and
1990s.

6.1 WYSIWIS*

In 1987 a group of researchers at XEROX Palo Alto Research Center worked on
a collaboration system for meetings [12]. For that, they took a closer look at the
WYSIWIS principle that in their opinion supports many features an analog sys-
tem such as a whiteboard® has. But they also hold that WYSIWIS interpreted
strictly is too inflexible. This work is an example of how to handle problems
evoked by the strict interpretation of the principle. It gives as well ideas for a
collaborative drawing system.

6.2 Cognoter

The same group who did the research on the WYISIWIS principle developed
an application named Cognoter that serves as a support system for collabo-
rative organization of ideas [13]. They point out the benefits of working in a
group. Further, they have a closer look on how to support the process of find-
ing ideas®, as well as organizing and evaluating them.

6.3 GROVE¥

In 1989 a group of researchers at the Microelectronics and Computer Tech-
nology Corporation in Austin, Texas worked on a collaborative outline edi-
tor named GROVE [4]. In their findings they describe the difference between
shared and private workspaces. Along with that they developed synchroniza-
tion boundaries for their system. The work also contains a discussion about
WYSIWIS. Concurrency control in synchronous collaboration systems is also
discussed by taking different approaches like locking of content and opera-
tional transformations® into account.

6.4 Portholes

In 1992 researchers at Xerox PARC*® developed a system to increase awareness
of distributed work groups called Portholes [3]. The basic idea is that each col-
laborator has a camera and a microphone installed at his or her work place. The

* What You See Is What I See

% Their metaphor is a chalkboard.

% Brainstorming

% GRoup Outline Viewing Editor

% Optimistic approach to synchronization where an operation is executed immediately
with the possiblity to undo it later.

% Locations in Cambridge, Great Britan and Palo Alto, CA, USA

26

system shows the images of the whole group in one view. Consequently one
can see who is actually working at a given time. With the microphones short
audio messages could be recorded. The system they developed made it possible
to be aware of ones collaborators without much need of information gathering.
In their work they also describe the architecture of the system which consists of
serveral servers for the different locations. Those servers are responsible for the
image processing of their connected clients. In addition, the servers synchro-
nize to the servers of the other locations so that a client only has to query one
server to get the information being stored by the whole system.

6.5 ShrEdit

In 1992 researchers at Xerox PARC in Cambridge did research on a collabora-
tive text editor as well [2]. In their findings they compare different approaches
made by other research teams. Moreover, their approach focuses on the concept
of shared feedback. The main statement of the group is that giving a group
enough information on what is happening on the shared workspace and en-
abling them to communicate informally is better than predefined roles®.

6.6 TeamWorkStation

In 1990 a group of researchers at NTT Human Interface Laboratories developed
an interesting approach to integrate virtual and actual workspaces [9]. The ba-
sic concept is to make video overlays of different workspaces. This creates a
high acceptence since each user can use the tools he or she is most comfortable
with. Obviously a problem is to merge the work a group has done into one arti-
fact. They integrated microphone and camera as well to make communication
between collaborators as easy as they would sit next to each other.

6.7 Single Display Groupware

In 1999 a group of researchers at the University of Maryland developed a col-
laboartion system that has its focus on local collaboration on one computer [14].
The challenge of this work was to design a system that offers individial in-
put possibilities for each collaborator. At this time multitouch enabled devices
where not present and the guiding input principle was one mouse and one
keyboard on one machine. This work offers an insight on how collaboration
support works on a level of most narrow cooperation.

4 which would mean additional management overhead for the collaborative work ses-
sion

27

7 Future Work

As this work is only a part of a project that took place at Hasso-Plattner-Institut
in 2012 there are some ideas that not have been implemented. This chapter will
suggest some of the work that might be done in order to improve our system.

7.1 Software Quality

As the system served as a platform to experiment and try out different ap-
proaches, the software quality is not very high. In order to make the system
ready for productive use, there should be some work done to increase the qual-
ity of the software. To achieve that, the used algorithms and architecture should
be much more robust since it seems to fail unexpectedly when using it. Note
that the amount of tests is rather small. To ensure that the written software
does what we expect, there should be at least a unit test suite that tests the
functionality of the system.

Furthermore, to ensure a good extensibility and understanding of the sys-
tem there should be additional documentation. Especially the architecture and
functionality should be documented well for creation of better understanding.

7.2 Client Features

As seen in the chapters above, the client application has some features that
support synchronous or asynchronous collaboration style. In order to create
more possibilities of working styles and improve the collaborative work we
have some features in mind that the client could support.

Chat System The chat is a way to communicate within the system. However,
the text messages that are sent and displayed to all participants of a working
session form a single stream. As there might be groups of people within the
workgroup working focused on special features, a stream for the whole group
might not work out well. Since different threads in a single stream are diffi-
cult to read, an additional information to the chat message can help to split the
stream up into different topics. This additional information could be a posi-
tion within the shared workspace. We imagine a chat system which we called
ObjectTalk in which conversations happen around the object of interest. By do-
ing so, everyone who is interested in this coversation can scroll the view to the
object where the chat message are displayed as well.

Drawing The drawing of sketches works quite well in the current version of
the system. But an opposite operation is missing in the system. There is a
way to clear the whiteboard by deleting all contents, but when drawing users
also want to erase single strokes that are wrong. For deletion, we imagine to
different kinds of erasers: The first approach is an eraser that works just as a
eraser on paper. Usability wise, it is just a special pencil that deletes content

28

instead of creating it. The second approach is a tool to delete whole lines. The
basic idea is that the user draws a line across all lines that he or she wants to
delete. With that approach, much content could be deleted with one action by
also being able to select what should be deleted.

Change Detection The detection of changes on properties*! which are part of
the Morphic Framework do not have to be discovered by diffing the objects
over and over again. For that pupose the Morphic’s getter and setter functions
can be utilized. In addition, other than properties, the addition of scripts to an
object can be detected via the addScript function of a morph. The need of diffing
and merging of objects does not cancel out since the adding and changing of
arbitrary properties of the object must be detected as well.

Having this utilization of Morphic’s getter and setter functions, it is possible
to keep a log of the changes that have been made. This log allows to implement
an undo-redo feature for the changes on Morphic properties.

Conflict Handling Currently, the handling of conflicts is not actively done by
the application. Our approach is that the group will coordinate itself to avoid
such editing conflict. Since human communication is not free of misunder-
standings, the system should somehow handle editing conflicts. A possible so-
lution would be to accept the most current change that happened on an object.
For example, if two users change the size of a morph in an overlapping way, the
change that happened lastly will be applied. Doing so the optimistic synchro-
nization approach can still be used. The client which made the change that is
going to be accepted will discard the update it is receiving from the other client
because it’s change is more recent. The other client whose change is discarded
will apply the change it is receiving to its synchronization state.

Connections The current implementation does not synchronize connections
since the synchronization boundary does not allow to synchronize objects that
were not dropped onto the synchronization pane. In order to have connections
available, we could at least allow connections to objects that are already syn-
chronized.

Creating Awareness of Changes Another problem occures when one user is
rejoining an existing session. The work that has been done in the time he or
she was offline will be synchronized completely to his or her client. This hard
synchronization of the state is lacking of awareness of what is changed. We
imagine to create a timeslider with wich the user can replay the actions at his or
her own speed. Additionally, diffing to the latest version of an object can create
an understanding of what changed with the updates that the user just received.

4 e.g. color, size, position

29

Snapshot of Drawings Currently drawings could not be reused since they can
not be accessed as usual morphs when the user interacts on the whiteboard.
For recomposition puposes we thought of a tool that would allow the user to
take photos of the drawings which are then pasted to a new morph that can be
dragged around just like any other morph.

Alternative Clients The design allows to implement different clients that com-
municate over the same synchronization server. It would be interesting to im-
plement clients in systems different from Lively Kernel. That could attract new
users and by that create more freedom of the tools the users have to use.

7.3 Server Improvements

The software of the synchronization server could improve as well. By now
when the server crashes it has to be restared by hand. By executing the server
in a loop that restarts the server as it crashes, this problem can be solved.

Further, we made sure that broadcasting is possible, but only on the level of
channels. To be able to send messages to every client that is connected to the
server for example for maintainance reasons there should be a way to broadcast
messages to all connected clients.

In order to enable a better integration into other existing systems we could
use a standard instant messaging protocol like XMPP.

Lastly, it could be interesting to implement the system without a synchro-
nization server. Communication would have to happen in a peer-to-peer man-
ner. A problem with that approach could be that it would possibly use more
bandwidth since one client has to send its changes to multiple clients instead
of just the server. Another problem could be how the clients get to know each
other.

30

8 Conclusion

This work builds a basic implementation of synchronous collaboration support
in Lively Kernel. We found solutions for fast sharing of content. This enables
users to work together on synchronized objects. Further we illustrated how
collaborative work can be supported on the levels of idea finding and imple-
mentation.

Nevertheless two main problems remain that need to be faced in order to
create a productive collaboration system. First, the problem of overlapping
actions [4] needs to be solved. The present system does not handle actions
that happen at nearly the same time on the same object. As an example, one
user might change the color of a morph. If his or her collaborator is changing
the color of the same morph before the change arrives at his or her client both
synchronization states will not be the same. This is because both clients receive
the update of the other client. An approach to solve this was given in Future
Work.

Secondly, the awareness for people (re-)joining a session needs to be im-
proved. Currently there is no way to see what happend in the meantime*?. We
thought of a solution for this problem as well. An approach could be a times-
lider that enables the user to scroll through the actions that happend.

The chapter Future Work showed that there are several ideas for features to

improve the system. Finally, built on Lively Kernel the system is a suitable
platform for collaboration research.

2 The time the participant was offline

31

References

10.
11.

12.

13.

14.

15.

16.

17.

. Anderson,]J.C., Lehnardt, J., Slater, N.: CouchDB: The Definitive Guide Time to

Relax. O'Reilly Media, Inc., 1st edn. (2010)

. Dourish, P, Bellotti, V.: Awareness and coordination in shared workspaces. In: Pro-

ceedings of the 1992 ACM conference on Computer-supported cooperative work.
pp. 107-114. CSCW "92, ACM, New York, NY, USA (1992)

. Dourish, P, Bly, S.: Portholes: supporting awareness in a distributed work group.

In: Proceedings of the SIGCHI conference on Human factors in computing systems.
pp. 541-547. CHI '92, ACM, New York, NY, USA (1992)

. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. SIGMOD Rec.

18(2), 399-407 (Jun 1989)

. Graham, T., Phillips, W., Wolfe, C.: Quality analysis of distribution architectures

for synchronous groupware. International Conference on Collaborative Computing:
Networking, Applications and Worksharing 0, 41 (2006)

. Ingalls, D., Palacz, K., Uhler, S., Taivalsaari, A., Mikkonen, T.: The lively ker-

nel a self-supporting system on a web page. In: Hirschfeld, R., Rose, K. (eds.)
Self-Sustaining Systems, Lecture Notes in Computer Science, vol. 5146, pp. 31-50.
Springer Berlin / Heidelberg (2008), 10.1007 /978-3-540-89275-5_2

. Krahn, R,, Ingalls, D., Hirschfeld, R., Lincke, J., Palacz, K.: Lively wiki a develop-

ment environment for creating and sharing active web content. In: Proceedings of
the 5th International Symposium on Wikis and Open Collaboration. pp. 9:1-9:10.
WikiSym '09, ACM, New York, NY, USA (2009)

. Lincke, J., Krahn, R., Ingalls, D., Roder, M., Hirschfeld, R.: The lively partsbin-a

cloud-based repository for collaborative development of active web content. Hawaii
International Conference on System Sciences 0, 693-701 (2012)

. Ohkubo, M., Ishii, H.: Design and implementation of a shared workspace by inte-

grating individual workspaces. SIGOIS Bull. 11(2-3), 142-146 (Mar 1990)

Rauch, G.: socket.io (2012), http://socket . io, visited 27.06.2012

Stamm, S.: Handling Touch Events on Mobile Devices for Lively Kernel. bachelor’s
thesis, Hasso-Plattner-Institut, Potsdam, Germany (June 2012)

Stefik, M., Bobrow, D.G., Foster, G., Lanning, S., Tatar, D.: Wysiwis revised: early
experiences with multiuser interfaces. ACM Trans. Inf. Syst. 5(2), 147-167 (Apr 1987)
Stefik, M., Foster, G., Bobrow, D.G., Kahn, K., Lanning, S., Suchman, L.: Beyond the
chalkboard: computer support for collaboration and problem solving in meetings.
Commun. ACM 30(1), 32—47 (Jan 1987)

Stewart, J., Bederson, B.B., Druin, A.: Single display groupware: a model for co-
present collaboration. In: Proceedings of the SIGCHI conference on Human factors
in computing systems: the CHI is the limit. pp. 286-293. CHI 99, ACM, New York,
NY, USA (1999)

Thomschke, A.: Object Diffing and Merging. bachelor’s thesis, Hasso-Plattner-
Institut, Potsdam, Germany (June 2012)

Tilkov, S., Vinoski, S.: Node.js: Using javascript to build high-performance network
programs. IEEE Internet Computing 14, 80-83 (2010)

Ungar, D., Smith, R.B.: Self. In: Proceedings of the third ACM SIGPLAN conference
on History of programming languages. pp. 9-1-9-50. HOPL III, ACM, New York,
NY, USA (2007)

http://socket.io

	Design and Implementation of Shared Workspaces in a Mobile and Desktop Environment
	Introduction
	Approach / Problems
	Client-Server Architecture
	Data Exchange Format
	Synchronization

	Implementation
	Synchronization of Morphs
	Synchronization of Drawings
	Awareness Features

	Examples and Scenarios
	Exchange of Content Between Worlds
	Developing Ideas Together
	Communication Within the System

	Performance Evaluation
	Related Work
	WYSIWIS
	Cognoter
	GROVE
	Portholes
	ShrEdit
	TeamWorkStation
	Single Display Groupware

	Future Work
	Software Quality
	Client Features
	Server Improvements

	Conclusion
	References

